A.D.M.COLLEGE FOR WOMEN (AUTONOMOUS),

(Nationally Accredited With 'A' Grade by NAAC 4th Cycle)(Affiliated to Bharathidasan University, Tiruchirappalli) NAGAPATTINAM- 611 001

PG & RESEARCH DEPARTMENT OF ZOOLOGY

SYLLABUS

B.Sc., ZOOLOGY

2024-2025 onwards

CURRICULUM STRUCTURE - UG (SCIENCE) - I Year 2024 Batch Onwards

Part	Category of Courses		No. of Courses	Hrs	Total Credits
Part I	Language Courses (Tamil/Hindi/French/Arabic/ Sanskrit)		4	24	12
Part II	English Language Courses		4	24	12
	Core Courses (CC) (T – 10, P – 4)		14	70	60
	Minor Course (T – 4 / 5 , P – 2/1)		6	24	16
Part III	Discipline Specific Courses (DSC)		3	10	9
	Project		1	3	3
	Skill Enhancement Courses (SEC)		4	8	8
	Ability Enhancement Courses (AEC)		3	6	6
	Multi Disciplinary Courses (NME)		2	4	4
Part IV	Environmental Studies		1	2	2
	Value Education		1	2	2
	Soft Skill Development		1	2	2
	Summer Internship/Industrial Activity		0	0	2
	Gender Studies		1	1	1
Part V	Extension Activity (NCC/NSS/Sports/Any Other Activities)		0	0	1
	Т	otal	45	180	140

EXTRA CREDIT SCHEME STRUCTURE - 2024 - 2027

Courses	Credits	Semester	Marks
Extra Credit Courses I(Professional English)	2	I	100
ECPEA - ECC I - PROFESSIONAL ENGLISH FOR ARTS AND SOCIAL SCIENCES			
(Tamil, English, History, Economics, Mathematics, CS, IT, BCA)			
ECPEB - ECC I - PROFESSIONAL ENGLISH FOR COMMERCE AND MANAGEMENT			
(Commerce & BBA)			
ECPEC - ECC I - PROFESSIONAL ENGLISH FOR LIFE SCIENCES			
(Zoology, Botany, Biochemistry & Marine)			
ECPED - ECC I - PROFESSIONAL ENGLISH FOR PHYSICAL			
SCIENCES			
(Physics, Chemistry & Geology)			
Extra Credit Courses II (Skill Course I – Add on)	2	II	100
Extra Credit Courses III(Skill Course II- Add on)	2	III	100
Extra Credit Courses IV(Skill Course III- Add on)	2	IV	100
Value added course I (Multidisciplinary)	2	V	100
Value added Course II (Same disciplinary)	2	VI	100
Total	12		

SCHEME OF EXAMINATIONS – 2024 Batch

(For UG Science)

	SEMESTER – I								
PART	COURSE TYPE	COURSES	HOURS	CREDITS	EXAM DURATION		AX. RKS EXT		
Part I	Language Course I	LC I - Pothu Tamil I	6	3	3	25	75		
Part II	English Course I	ELC I – General English I	6	3	3	25	75		
	Core Course I	CC I- Biology of Invertebrates	5	4	3	25	75		
Down III	Core Practical I	CP I- Biology of Invertebrates and Chordates	3	-	1	-	-		
Part III	First Minor Course I	FMC I - Botany I	4	3	3	25	75		
	First Minor Practical I	FMP I - Botany II - Practical	2	-	-	-	-		
Part IV	Skill Enhancement Course I	SEC I - Apiculture	2	2	3	25	75		
Part IV	VE	Value Education	2	2	3	25	75		
*Extra Credit 1	Extra Credit I	Extra Credit Course I - Professional English		2	-	0	100		
		No. of Courses - 6+1		17+2					

	SEMESTER – II											
			S	TS	1 ION	MAX. N	MAX. MARKS					
PART	COURSE TYPE COURSES		HOURS	CREDITS	EXAM DURATION	CIA	EXT					
Part I	Language Course II	LC II - Pothu Tamil II	6	3	3	25	75					
Part II	English Course II	ELC II - General English II	6	3	3	25	75					
	Core Course II	CC II- Biology of Chordates	6	5	3	25	75					
	Core Practical I	CP I- Biology of Invertebrates and Chordates	2	3	3	40	60					
Part III	First Minor Practical I	FMP I - Botany II - Practical	2	2	3	40	60					
	First Minor Course II	FMC II - Botany -III	4	3	3	25	75					
Part IV	Skill Enhancement Course II	SEC II - Aquaculture	2	2	3	25	75					
Turtiv	EVS	Environmental Studies	2	2	3	25	75					
*Extra Credit II	Extra Credit II	Extra Credit Courses II (Skill Course I – Add on)		2	-	0	100					
		No. of Courses – 8+1		23+2								

	SEMESTER – III									
PART	COURSE TYPE	COURSES	HOURS	CREDITS	EXAM DURATION	MA MAI	AX. RKS EXT			
Part I	Language Course III	LC III - Pothu Tamil III	6	3	3	25	75			
Part II	English Course III	ELC III - General English III	6	3	3	25	75			
	Core Course III	CC III - Cell Biology	6	6	3	25	75			
Part III	Core Practical II	CP II - Cell Biology and Environmental Biology	2	-	1	-	-			
	Second Minor Course I	SMC I - Chemistry I	4	3	3	25	75			
	Second Minor Practical I	SMP I - Chemistry II -Practical	2	-	-	-	-			
Part IV	Multi Disciplinary Course I	NME I - Commercial Zoology	2	2	3	25	75			
Partiv	Skill Enhancement Course III	SEC III - Poultry Science	2	2	3	25	75			
*Extra Credit III	Extra Credit III	Vermiculture (Skill Course II- Add on)		2	-	0	100			
		No. of Courses – 6+1		19+2						

	SEMESTER – IV									
			SS	LLS	M ION	MA	AX. RKS			
PART	COURSE TYPE	COURSES	HOURS	CREDITS	EXAM DURATION	CIA	EXT			
Part I	Language Course IV	LC IV - Pothu Tamil IV	6	3	3	25	75			
Part II	English Course IV	ELC IV - General English IV	6	3	3	25	75			
	Core Course IV	CC IV - Environmental Biology	5	5	3	25	75			
	Core Practical II	CP II - Cell biology and Environmental Biology	3	3	3	40	60			
Part III	Second Minor Practical I	SMP I - Chemistry II- Practical	2	2	3	40	60			
	Second Minor Course II	SMC II - Chemistry III	4	3	3	25	75			
D IV	Multi Disciplinary Course II	NME II - Aquarium Keeping	2	2	3	25	75			
Part IV	Ability Enhancement Course I	AEC I - Bioinstrumentation	2	2	3	25	75			
*Extra Credit IV	Extra Credit IV	Computer Literacy (Skill Course III-Add on)		2	-	0	100			
		No. of Courses -8+1		23+2						

	SEMESTER – V									
			RS	ITS	M TON	MAX. MARKS				
PART	COURSE TYPE COURSES		HOURS	CREDITS	EXAM DURATION	CIA	EXT			
	Core Course V	CC V - Animal Physiology	5	5	3	25	75			
	Core Course VI	CC VI - Genetics	5	5	3	25	75			
	Core Course VII	CC VII - Biotechnology	5	4	3	25	75			
D 4 III	Core Course VIII	CC VII - Microbiology	5	4	3	25	75			
Part III	Core Practical III	CP III - Animal Physiology, Genetics, Biotechnology, Microbiology	3	3	3	40	60			
	Discipline Specific Elective I	DSE I - Wildlife Biology and Conservation Management/Food and Nutrition	3	3	3	25	75			
	Ability Enhancement Course II	AEC II - Medical lab Technology	2	2	3	25	75			
Part IV	SSD	Soft Skill Development	2	2	3	25	75			
	Summer Internship/Ind. Training	Internship	-	2						
*Extra Credit V	Extra Credit Courses V	Ornamental Fish Culture I (Multidisciplinary)		2	-	0	100			
		No. of Courses – 8+1		30+2						

	SEMESTER – VI									
PART	COURSE TYPE	COURSES	HOURS	CREDITS	EXAM JRATION		AX. RKS			
IAKI		COURSES	ЮН	CRE	EXA DURA	CIA	EXT			
	Core Course IX	CC IX - Developmental Biology	6	5	3	25	75			
	Core Course X	CC X - Evolutionary Biology	6	5	3	25	75			
	Core Practical IV	CP IV - Developmental Biology and Evolutionary Biology	3	3	3	40	60			
Part III	Core Course IX	CC IX - Project	3	3	3	25	75			
	Discipline Specific Elective II	DSE II - Animal Behaviour / Dairy farming	3	3	3	25	75			
	Discipline Specific Elective III	DSE III - Entomology / Public health and hygiene	4	3	3	25	75			

Part IV	Ability Enhancement Course III	AEC III - Introduction to Nano Biotechnology	2	2	3	25	75
	Skill Enhancement Course IV	SEC IV- Sericulture	2	2	3	25	75
Part V	GS	Gender Studies	1	1	3	25	75
	Extension Activities	(NCC/NSS/Sports/Any Other Activities)	-	1	-	-	-
*Extra Credit VI	Extra Credit Courses VI	Economic Zoology II (Same disciplinary)		2	1	0	100
		No. of Courses -9+1		28+2			

Grand Total – Credit 140 & Extra Credit 12

Controller of Examinations

Semester-I /	CC I - BIOLOGY OF INVERTEBRATES	Course Code:
Core Course- I		
Instruction Hours: 5	Credits: 4	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks:
		100

Cognitive Level	K1 -Recalling K2-Understanding K3 - Applying K4 - Analyzing K5 - Evaluating K6 - Creating
Course Objectives:	 To understand the systematic and functional morphology of various groups of invertebrates. To study the characteristics, economic importance, affinities and adaptations of invertebrates. Understand the non chordate animals in the world that surrounds us. Observe the process of evolution from unicellular cells to multi cellular organism. Able to recognize economically important invertebrate fauna.
Unit I	General characters and classification of protozoa up to Order with suitable examples of biological interest. Phylum Protozoa - Detailed study of Paramecium 1. Nutrition in Protozoa 2. Protozoa and Human diseases (Plasmodium, Entamoeba, Trypanosoma, Leishmania, Trichomonas, Toxoplasma, Balantidium with special reference to mode of infection, pathology and control) Phylum Porifera- Detailed study of Sycon 1. Canal system in sponges 2. Spicules in sponges
Unit II	General characters and classification of Coelenterata up to Order with suitable examples of biological interest. Phylum: Coelenterata - Detailed study of Obelia 1. Corals and Coral reefs 2. Ctenophora-General organization and affinities. Phylum-Platyhelminthes-Detailed study of Fasciola hepatica. 3. Parasites affecting Man & Domestic animals (Schistosoma haematobium, Taenia solium, Hymenolepis nana, Diphyllobothrium latum, Schistosoma nasolis and Echinococcus granulosa)

Unit III	General characters and classification of Nemathelminthes up with suitable examples of biological interest. Phylum-Nemathelminthes .Detailed study of Ascaris 1. Nematode parasites in man (Enterobius vermicularis, Ancycle duodenale, Wuchereria bancrofti, Dracunculus medinensis, Tric spiralis with special reference to mode of infection, pathology at Phylum Annelida-Detailed study of Nereis 2. Adaptive radiation in Polychaetes	ostoma chinella
Unit IV	General characters and classification of Arthropoda up to O suitable examples of biological interest. Phylum Arthopoda - Detailed study of Penaeus monodon 1. Organisation & affinities of Peripatus 2. Crustacean larvae & their significance 3. Economic importance of Insects.	order with
Unit V	General characters and classification of Mollusca and Echin up to Order with suitable examples of biological interest. Phylum Mollusca - Detailed study of Pila globosa 1. Economic importance of mollusca Phylum Echinodermata - Detailed study of starfish- Asterias in 2. Larval forms of Echinoderms & their significance 3. Water vascular system in Echinoderms.	

- 1. EKAMBARANATHAAYYARM and ANANTHAKRISHNAN.T.N(1994)
 - Manual of Zoology vol.I,S. Viswanathanpvt.Ltd., Madras.
- 2. N.ARUMUGANN.C.NAIR,DR.T.MURUGANETAL-Text book of Invertebrates, SarasPublications.

ReferenceBooks:

- 1. BARNESR.D.(1968) Invertebrate Zoology W.B., Saunders company, Philadephia.
- 2. CHENG (`1964) Parasitology. W.B. company, Philadephia.
- 3. HYMAN.L.H, 1960. The Invertebrates vol.ItoVII (M.C.Hrawhillbook co,.)
- 5. JORDONE.L and VERMAP.S.(`1983)Invertebrate Zoology S.chand&co
- 6. KOPTALR.L(1997) Modern textbook of Zoology, Rastogi company, Meerut(VP), India.
- 7. PARKER and HASEWELL (1964) Text book of Zoology vo.I(Invertebrate) AZTBS.Publisher sand distributes-New Delhi11051- 874pp.
- 8. PRASAD.S.N.-Textbook of Invertebrate Zoology kitabmahal, Allahabad.

9. DHAMI.P.S and J.K.DHAMI.(2003).Invertebrate Zoology, Chand.R and CoPublishers –New Delhi. KADAM.K. The Invertebrates Emkay Publication, Delhi.

Course Outcomes

On completion of the course the students should be able to

CO1:	Describe the distinguishing characteristics of the major taxa. Understand biodiversity, habitat, adaptation, organization and taxonomic status of invertebrates
CO2:	Recall certain morphological attributes and physiological processes that are distinct and significant to each Phyla.
CO3:	Understand the systemic and functional morphology of various groups of invertebrates Explain the basic aspects of structural and functional details of Invertebrates
CO4:	To compare and understand the general and specific characteristics within each Phyla.
CO5:	Interpret the affinities, evolutionary relationships and adaptation of the major taxa.

Web Resources

https://en.wikipedia.org/wiki/Invertebrate

https://www.britannica.com/animal/invertebrate

https://www.toppr.com/guides/biology/animal-kingdom/phylum-chordata/

Mapping of Course Outcomes with Programme Outcomes & Decific Outcome

CO/PO	PO				PSO					
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	M	S	S	S	S	S
CO2	S	S	S	S	M	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

- S- Strongly correlating
- M- Moderately Correlating
- W- Weakly Correlating
- N- No Correlation

Semester-I / Core Practical	l-I	CP I - BIOLOGY OF INVERTEBRATES AND CHORDATES - PRACTICAL	Course Code:					
Instruction H Internal Mar		Credits: 3 External Marks- 60	Exam Hours: 3 Total Marks: 100					
Course Objectives:	2. To so of In 3. To 14. Unde	 To study about the various characteristic features and adaptations of Invertebrates and vertebrate animals. To mount the important parts of Invertebrate animals. Understand the comparative anatomy of chordates. 						
Unit I	DISSECTIONS 1. Earthworm: Digestive system and Nervous system 2. Lamellidens: Digestive system 3. Pila: Digestive system 18 I							
Unit II	1 2 3	MOUNTING 1. Earthworm: Body setae 2. Prawn: Appendages 3. Mouth parts of Mosquito, Honey Bee and House Fly. 4. Pila: Radula 18 Hours						
Unit III	Am 2. Draw T.S of N 3. Biolog Ge 4. Relate Spo Ped 5. Write	ify Giving Reason. oeba, Plasmodium, Metridium, Megascolex, , Periplan labeled sketch of Planaria, T.S. of Sea anemone, T.S of Taenia solid lereis. gical significance mmule of sponge, Physalia, , Heteronereis, Limulus, Sea structure and function longe Spicules, Tape worm- Scolex, Nereis- Paragicellari, notes on adaptation drepora, Chaetopterus, Cyclops, Octopus, Mytilus,	ım, & T.S epia,					
Unit IV		GY OF CHORDATA Dissection Shark: Mounting of Placoid scales Fish – Digestive system						
			18 Hours					

Unit V

SPOTTERS

1. Classify giving reasons:

Balanoglossus, Shark, Calotes versicolar, Pigeon, Rabbit b)Biological significance

Amphioxus, Ascidian, Narcine

Axolotyl larva, Draco volans, Chaemelion.

c) Write notes on

Gambusia affinis, Hippocampus, Anabas scandans, Alytes, Bat, Viper, Kingfisher

d) Relate structure and function

Echeneis, Exocoetus, Poison apparatus of Cobra, Quill feather of bird

e) Draw labeled Diagram

Endoskeleton of Frog: Skull, Pectoral, Pelvic girdle, Fore limbs and hindlimbs.

Preparation of e- museum with 10 invertebrate and 10 chordate specimens

18 Hours

Text Book:

- 1. EKAMBARANATHA AYYAR M and ANANTHAKRISHNAN.T.N(1994)Manual of Zoology vol.I, S.Viswanathan pvt.Ltd., Madras.
- 2. AYYAR E.M and ANANTHAKRISHNAN .T.N ,1992. Manual of zoology ,Vo.II(11hordate), Viswanathan .S (Printers and Publishers), Pvt., Ltd., Madras 981pp.

Reference Books:

- 1. BARNES R.D.(1968)Invertebrate zoology W.B., Saunders company, Philadephia.
- 2. CHENG (`1964) Parasitology. W.B.company, Philadephia.
- 3. JORDON, E.L and VERMA .P.S. 1955. Chordate Zoology and Elements of Animal Physiology., S.Chand & Co.
- 4.KOTPAL, R.L(1997) Modern Text Book of Zoology Vertebrates, Rastogi Publications Meerut, India.
- 5. MAJUPURIA T.C., 1978. Introduction to Chordates, Pradeep Publications, Jullundur.
- 6. PARKER and HASEWELL .1964. Text book of zoology Vol.II (Chordata), A.Z.T.B.S

e- Resources:

Earthworm: Digestive system: https://www.youtube.com/watch?v=mtxjZu0suiw

Lamellidens: Digestive system:

https://www.youtube.com/watch?v=C-3GqvLswc8

Prawn: Appendages: https://www.youtube.com/watch?v=xb7rw4Hz1c8

Course Outcomes:

On completion of the course the learner will be able

CO 1:	Dissect and identify the internal organs of invertebrate organisms
CO 2:	Understand the mounting techniques of parts of the organisms
CO 3:	Understand the diversity of invertebrates and its outline systematic. Discuss
	their affinities and adaptations to different modes of life
CO 4:	Dissect and identify the internal organs of chordates animals
CO 5:	To infer the affinities, evolutionary relationships and adaptation of the major
	taxa and to explain their economic importance with respect to Chordates

Mapping of Cos with Pos & PSOs

CO/PO	PO			PSO						
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

Semester-I/ Skill	SEC-I - APICULTURE	Course Code:
Enhancement Course - I		
Instruction Hours: 2	Credits: 2	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive Level	K1 -Recalling K2-Understanding K3 -Applying K4 - Analyzing K5 - Evaluating K6 - Creating
Course Objectives:	 To Understand the Biology of Honey bee Learn the Teaching of apiculture Understand the economic importance of honey Skill in the apiary management Ability to do apiary cost benefit analysis
Unit I	History and Scope of Bee keeping : Systematic Position- Identification of honey bee- Drone bee, Worker Bee and Queen bee. Kinds of Honeybees in India. 6 Hours
Unit II	Honey Extraction: Honey extracting equipments — honey extractor, uncapping knife, uncapping tray, collecting vessel. Appliances of Apiaries-Comb frames, Queen excluder, Drone Excluder, Bee veil and Smoker, Newton's Bee hive. 6 Hours
Unit III	Arranging an Apiary: location of an Apiary, preparation of an Apiary-Handling of Honey bees. Choice of Honey bee colony in apiculture. Bee pollination and advantages 6 Hours
Unit IV	Bee products : Bee Products and benefits - Honey - Chemical composition, nutritional and medicinal value of Honey, Nectar, Bee wax, propolis, Royal Jelly, Bee Pollen,
Unit V	Honey bee diseases: Bacteria, Fungi and Viral Diseases. Brood diseases and Adult diseases. 6 Hours 6 Hours

- 1. **K.V.Jayashree**, **C.S. Tharadevi and N. Arumugam 2018.** Apiculture, Saras publication.
- **2.** NAGARAJA.N&RAJAGOPAL.D–Honey Bees, Disease, Parasites, Pests, Predators and their Management MJP Publishers Chennai

Reference Books:

- 1. CHERIAN, R. & K.R.RAMANATHAN, 1992, Bee keeping in India. .MISHRA, R.C., 1985 Honey bees and their Management in India, ICAR.
- 2. SINGH, S. 1992 Bee Keeping ICA
- 3. SHARMA, P. and SINGH, L. 1987 Hand book of Bee keeping, controller printing and stationery, Chandigar.
- 4. RARE, S. 1988 Introduction to Bee keeping, Vikas Publishing house.
- 5. SHUKLA, G.S. and UPADHYAY V.B (1997) Economics zoology, Rastogi Publication, Meerut.
- 6. MORSE, R.A. 1990. The ABC and XYZ of Bee culture 40th edition A.1 Root & co., Ohio.
- 7. MANJU YADAV Economic zoology Discovery Publishing house New Delhi.
- 8. RAVINDRANATHAN K.R. A Text book of Economic Zoology.
- 9. SATHE T.V. Fundamentals of Bee Keeping –Daya Publishing House Delhi.
- 10. NAGARAJA.N&RAJAGOPAL.D Honey Bees, Disease, Parasites, Pests, Predators and their Management MJP Publishers Chennai.

Web Resources:

https://en.wikipedia.org/wiki/Beekeeping https://study.com/academy/lesson/apiculture-definition-importance.html https://apinz.org.nz/

Course Outcomes:

On completion of the course the learner will be able

CO 1:	Know the scope of bee keeping and Learn various concepts of apiculture.
CO 2:	Understand what makes the scientific study of anima land the Bee keeping equipments
CO 3:	Engage in field-based research activities to understand
CO 4:	Be aware of a broad array of career options and activities in human medicine.

CO5: Know the well the theoretical aspects taught besides learning techniques for gathering data in the field

Mapping of Course Outcomes with Programme Outcomes & Decific Outcome Specific Outcome

CO/PO	PO				PSO					
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	M	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S

CO3	S	S	M	S	S	S	M	S	S	S
CO4	S	S	S	S	M	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

S- Strongly Correlating

M- Moderately Correlating

W- Weakly Correlating

N- No Correlation

Semester-II /	CC II -BIOLOGY OF CHORDATES	Course Code:
Core Course-II		
Instruction Hours: 6	Credits: 5	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cogniti ve Level	K1 -Recalling K2 -Understanding K3 -Applying K4 - Analyzing K5 - Evaluating K6 - Creating
Course Objectives:	 To impart current knowledge about the chordate animals of biological interest. To know about the Origin, systematic and functional morphology of various groups of chordates. To study the salient features affinities and adaptations of chordates. Able to describe the diversity in form structure and habits of vertebrates. Skill to explain characteristics and classifications of different vertebrates
Unit I	Prochordates and cyclostomes 1. Origin of Chordates 2. Protochordata – Distinctive features and affinities of Amphioxus, Balanoglossus and Ascidian. 1. General Topic: Retrogressive metamorphosis in Ascidian. 2. Cyclostomata – Distinctive features and affinities 18 Hours
Unit II	Fishes and Amphibians Gnathostomata- Detailed study of <i>Scoliodon sarrakowa</i> (shark) General Topic 1. Dipnoi and its affinities 2. Accessory respiratory organs in fishes. 3. Adaptive features of Apoda. 4. Parental care in Amphibia. 18 Hours
Unit III	Reptiles and Birds Detailed study of Calotes and Pigeon 1.Identification and distribution of poisonous and non- poisonous snakes of India. Poison apparatus 18 Hours

Unit IV	Mammals Detailed study of Rabbit. 1.Dentition in Mammal. 2.Aquatic mammals and their adaptations. 3.Prototheria special features with examples 18 Hours
Unit V	Comparative Anatomy 1. Comparative study of Heart and Brain in Shark, Frog, Calotes, Pigeon and Rabbit. 2. Endoskeleton of Frog. 18 Hours

- 1.AYYAR E.M and ANANTHAKRISHNAN .T.N ,1992. Manual of zoology Vo.II(chordata), Viswanathan .S (Printers and Publishers), Pvt., Ltd., Madras 981pp.
- 2. DR.THANGAMANI .A, DR.PRASANNAKUMAR.S, DR.NARAYANNAN .L.M, DR.ARUMUGAM. N, 9 th Revised Edition. Saras Publication.

Reference Books:

- 1. JORDON, E.L and VERMA .P.S. 1955. Chordate Zoology and Elements of Animal Physiology., S.Chand & Co.
- 2. KOPTAL, R.L(1997) Modern Text Book of Zoology Vertebrates, Rastogi Publications Meerut, India.
- 3. MAJUPURIA T.C., 1978. Introduction to Chordates, Pradeep Publications, Jullundur.
- 4. PARKER and HASEWELL .1964.Text book of zoology Vol.II (Chordata), A.Z.T.B.S Publishers and distributiors, New Delhi 110051m 952 pp.

Web Resources:

- 1. https://www.differencebetween.com/difference-between-fish-and-vs-amphibians/
- 2. https://www.nwf.org/Educational-Resources/Wildlife-Guide/Mammals
- 3. https://www.britannica.com/browse/Birds-Reptiles-Vertebrates

Course Outcomes:

On completion of the course the learner will be able

CO:1	Identify the general and specific characteristics of the different classes and the
	organization of the representative types
CO: 2	Recognize and describe the major groups of chordates
CO:3	Understand the diversity of Chordates and its outline systematic.
CO:4	Understand the unique features, taxonomy and functional morphology of different
	classes of chordates
CO:5	To infer the affinities, evolutionary relationships and adaptation of the major taxa.

Mapping of Course Outcomes with Programme Outcomes & Decific Outcome

CO/PO		PO			PSO					
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

S- Strongly Correlating

M-Moderately Correlating

W- Weakly Correlating

N- No Correlation

Semester-II / Skill Enhancement Course-II	SEC-II- AQUACULTURE	Course Code:
Instruction Hours: 2	Credits: 2	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Q :::	т 1	17.1 D 11.					
Cognitive Level		K1 -Recalling					
		K2 -Understanding					
		K3 -Applying					
		K4 - Analyzing					
		K5 - Evaluating					
		K6 - Creating					
Cour		Students should know basic concepts in Aquaculture.					
Obje	ectives	To know about the Types, Feed - formulation - feeding methods					
		Study the Shrimp hatchery technology					
		 Learn about the diagnosis, prevention and control measures 					
		Students should know basic concepts in Central aquaculture re	esearch				
		organizations					
	Importa	ance of aquaculture- Present status, prospects and scope in India. Fres	hwater				
	aquacult	lture- Brackishwater aquaculture- Mariculture - Metahaline culture in	India.				
Unit I	_	rpes of fish culture - Water quality management for aquaculture. Control of parasites,					
		predators and weeds in culture ponds. 6 Hours					
	predator	is and weeds in culture policis.	ours				
	Procure	ement of seed from natural resources- collection methods and segre	gation.				
	Hatchery technology for major carps and freshwater prawn. Artificial seed production –						
Unit II	1	Breeding under control conditions, induced breeding technique, larval rearing, packing					
		and transportation Commercial substitute for pituitary extracts. 6 Hours					
	and train	isportation Commercial substitute for pituitary extracts.	Juis				
	Shrimp	hatchery technology - Hatchery design, brood stock management, spa	wning,				
	larval rearing, Shrimp developmental stages, algal culture, packing and transportation.						
Unit III	Shrimp culture technology - extensive culture methods semi- intensive - intensive						
	_	methods - Edible and Pearl oyster culture - pearl production. Crab of					
	Econom	nic importance of Lobster, Sea urchin and Sea cucumber - by-products. 6	Hours				
	Fish and	d Shrimp diseases and health management - infectious diseases - Ba	cterial,				
Unit IV	Fungal, Viral, Protozoan; Non-infectious - environmental and nutritional diseases.						
	Diseases diagnosis, prevention and control measures.						
		6 Hou	ırs				
	Types of	of ornamental fishes (freshwater and marine), their breeding behavior	or and				
Unit V	biology.	. Oviparous, Ovo-viviparous and Viviparous fishes. Central aquaculture re	esearch				
Omt v		ations- CMFRI, , MPEDA and its activities.					
	organiza	6 Hou	ırc				
		U 110u	11.9				

- 1. Pillay, T. V. R. (1990). Aquaculture: Principles and Practices. Blackwell Scientific Publications Ltd.
- 2. Santhanam, R. (1990). Fisheries Science. Daya Publishing House.

Reference Books:

- 1. Das M. C. and Patnaik, P. N. (1994) Brackish water culture. Palani paramount Publications, Palani, T. N.
- 2. Day, F (1958). Fishes of India, Vol. I and Vol. II. William Sawson and Sons Ltd., London.
- 3. Jhingran, V. G. (1991). Fish and Fisheries of India. Hindustan Publishing Co., India
- 4. Maheswari. K. (1983) Common fish disease and their control. Institute of Fisheries Education, Powarkads (M.P).
- 5. Sinha, V.R. P. and Srinivastava, H. C. (1991). Aquaculture Productivity. Oxford and IBH Publications CO., Ltd., New Delhi.
- 6. Yadav, B. N. (1997). Fish and fisheries. Daya Publishing house, New Delhi.

Web Resources:

- 1. https://www.fao.org/4/AC232E/AC232E00.htm
- 2. https://www.slideshare.net/SaiprasadBhusare/ornamental-fish-species-list
- 3. https://agritech.tnau.ac.in/farm_enterprises/Farm%20enterprises_%20ornamental%20fisheries.html

Course Outcome

Upon completion of this course, Students would have

CO:1	To develop knowledge on the fish farm and their maintenance. Understand the methods
	of fish seed and feed production and develops knowledge on hatchery techniques
CO: 2	To apply the knowledge about different culture methods in aquaculture and gain
	knowledge on fish and shrimp breeding techniques and larval culture
CO:3	Identifies the different fishes diseases, diagnosis and their management strategies.
	Understands Ornamental fishes and central aquaculture organizations
CO:4	To Learn about the Fish and Shrimp diseases and health management
CO:5	To know the Types of ornamental fishes

COs		PO					PSO			
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	S	M	M	S	S	S	M	M	S
CO2	S	S	S	M	S	S	S	M	S	S
CO3	S	S	S	S	S	S	S	S	S	M
CO4	S	S	M	S	S	S	S	M	M	S
CO5	S	S0	M	S 0	M	S	M	L	S	S

S- Strongly Correlating

M-Moderately Correlating

W- Weakly Correlating

N- No Correlation

Semester-III / Core Course-III	CC III - CELL BIOLOGY	Course Code:
Instruction Hours: 6	Credits: 6	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive Level	K1 -Recalling K2 -Understanding K3 -Applying K4 - Analyzing K5 - Evaluating K6 - Creating
Course Objectives:	 To study about the techniques of cell and cellular organelles. To understand the basic concept of cell structures and functions. To know the cell structure at molecular level in prokaryote and Eukaryote Know different molecular and biologic technique Able to differentiate prokaryotic and eukaryotic protein synthesis mechanism
.Unit I	Microscopy – Principles and applications of Light and Electron Microscopes – SEM, TEM. Micro-technique – tissue fixation, embedding, sectioning and staining. Prokaryotes and Eukaryotes – Ultra structure and Organization of Prokaryotes – Bacteria- Virus – Bacteriophage and Animal cell. 18 Hours
Unit II	Cell membrane - Structure, Modification and functions. Cell organelles- Structure and functions of Mitochondria – Golgi body - Endoplasmic - Reticulum – Lysosome, Centrosome. Ribosomes.
Unit III	Ultra structure and functions of Nucleus , nucleolus, fine structure of chromosomes, nucleosome concept and role of histones, euchromatin and heterochromatin, Giant chromosomes. Cell division and cell cycle (Mitosis and meiosis, their regulation, steps in cell cycle, regulation and control of cell cycle. Cellular ageing and cell death. Biology of Cancer cell. 18 Hours
Unit IV	Gene concept: Structure of DNA - Types and functions of RNA - DNA Replication and DNA-repair mechanisms - Genetic Code - Codon, Anticodon. 18 Hours

Unit V	Protein Synthesis and processing: Transcription –Initiation – Elongation and elongation factors and Termination; Translation, translational inhibitors, Post-translational modification of proteins. Gene regulation: Operon model transcription – Transcription factors, Regulation in prokaryotes.
	18 Hours

- 1. ARUMUGAM.N.(2014) Cell Biology. Saras Publication.
- 2.DE ROBERTIES&DE ROBERTIES. 1988, Cell & Molecular biology, International edition, Hong kong.

Reference Books:

- 1. KUMAR, H.D, 1988, Molecular Biology and Biotechonology, Vikas Publishing house, New Delhi.
- 2. POWER,C.B. 1989.Essential of Cytology, Himalaya Publishing house ,Bombay. 3.VERMA P.S&AGARWAL .V.K. 1985 Cytology. Chand .S & Co.
- 4. TOMAR.B.S&SINGH .S.P. 10th EDI.Cell Biology. Rastogi Publication, Meerut.
- 5. MUNESWARAN. A.1999. Cell Biology, Brighton Book House, Madras.
- 6. BERRY .A.K. 2007. A Text book of Cell Biology, Emkay- Publications, Delhi
- 7. MEYYAN.R.P Genetics .Saras Publication

e- Resources:

http://www.biologybrowser.org.

- 1. https://web.uri.edu/cmb/cell-and-molecular-biology/#:~:text=CMB%20is%20the%20study%20of,define%20their%20structure%20and%20function.
- 2. https://bio.libretexts.org/Bookshelves/Cell_and_Molecular_Biology https://www.nature.com/subjects/molecular-biology

Course Outcomes:

On completion of the course the learner will be able

CO 1:	To impart knowledge about the prokaryotic and eukaryotic cell, biosynthesis of
	cellular membranes and organelles and the unified role it plays for the ultimate
	sustainability of the organisms.

CO 2:	Rigorous foundation in the principles of molecular and cellular biology give insights into the mechanisms involved in the synthesis and function of macromolecules such as DNA, RNA, and proteins.
CO 3:	Ability to make connections between the molecular mechanisms, holistic understanding of biological organization and function from the molecules to cells, tissues, organs and entire organism.
CO 4:	Studying Cells at molecular level trains the students to think logically, critically and quantitatively.
CO 5:	Learn to interpret statements made in the scientific literature, as well as in non-science areas, based on evidence, not anecdote.

Mapping of Cos with Pos & PSOs $\,$

CO/PO	PO				PSO					
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

- S- Strongly Correlating
- M- Moderately Correlating
- W- Weakly Correlating
- N- No Correlation

Semester-III&IV / Core Practical-II(III&IV)	CP II - (III & IV) - PRACTICAL II	Course Code:
Instruction Hours: 2	Credits: 3	Exam Hours: 3
Internal Marks -40	External Marks-60	Total Marks: 100

Course	• To Vnow the techniques of cell and melecular highest and
Objectives:	To Know the techniques of cell and molecular biology and Environmental Biology
Objectives.	 Ability to observe different stages of cell division.
	Skill to differentiate different cell types.
	 To expose the students about the types of natural resources and their importance.
	Know the environmental conservation and identification of insect
Unit I	Handling of Compound microscope to study cell types. Squash preparation of Onion root tip to study the stages of Mitosis. 18 Hours
Unit II	Squash preparation of Grasshopper testis to study the stages of Meiosis.
	Squash preparation of Salivary gland of Chironomous larva to study the Giant chromosome.
	18 Hours
Unit III	Centrifuge – Microtome
	Human, Cell types – Epithelial – Muscular and Vascular
	Preparation and identification of Barr Body
	Hydrological studies of water samples pH, Temperature ,Dissolved oxygen,
Unit IV	Nitrate and Phosphate. Identification of marine & freshwater plankton. Quantitative analysis of plankton.
	18 Hours
Unit V	Estimation of Population Density of Grass Land Insect By Sweep Net Method
	Species interactions, Animal association – symbiosis, Commensalism, Mutualism, Antagonism, Antibiosis, Parasitism, Predators and Competition Preparation of e museum and video clipping related to core practical 18 Hours

- 1. ARUMUGAM.N.(2014) Cell Biology. Saras Publication.
- 2. ARUMUGAM.N Developmental Biology, Saras publication

Reference Books:

- 1. DE ROBERTIES&DE ROBERTIES. 1988, Cell & Molecular biology, International edition, Hong kong.
- 2. CLARK, W.R 1991 The experimental foundations of modern immunology, Jhonwiley & Sons.
- 3. VEERA BALA RASTOGI, Developmental Biology, KedarNath Ram Nath Publishers, Meerut.
- 4. DAVID A. THOMPSON. 2011. Cell and Molecular Biology Lab. Manual.
- 5. P.GUNASEKARAN. 2007. Laboratory Mannual in Microbiology. New Age International.

- 6. D O HALL, S E HAWKINS. 1974. Laboratory Manual of Cell Biology. British Society for Cell Biology, Published by Crane, Russia.
- 7. MARY L. LEDBETTER. 1993. Cell Biology: Laboratory Manual. Edition: 2. Published by RonJon Publishing.
- 8. L.SY .FATHIMA .I and N. ARUMUGAM 1998 immunology Saras Publications.

e.Resources:

1. Squash preparation of Onion root tip to study the stages of Mitosis https://wwyoutube.cw.om/watch?v=5-ur7bWqlDQ

Hydrological studies of water samples

2. https://www.youtube.com/watch?v=ezZBpMfBgI4

Course Outcomes:

On completion of the course the learner will be able

CO 1:	Understand cell type and have thorough knowledge on microscope.
CO 2:	Ability to identify different stages of cell division and get thorough training on squash preparation.
CO 3:	Understand different cell types in human tissues and trained to operate the instrument microtome, centrifuge.
CO 4:	Understand and trained different developmental stages of chick. And get hands on training in mounting of chick blastoderm.
CO 5:	Learn lymphoid organs and know the technique of cell imprinting.

Mapping of Cos with Pos & PSOs

CO/PO	PO				PSO					
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	M	S	S	S	S	S
CO2	S	M	M	S	S	S	M	S	S	S
CO3	S	S	S	S	S	S	S	M	S	S
CO4	S	S	S	S	S	S	S	S	S	SM
CO5	S	S	S	S	S	S	S	S	S	S

S- Strongly correlating

M-Moderately Correlating

W-Weakly Correlating

N-No Correlation

Semester-III NME I	NME I – COMMERCIAL ZOOLOGY	Course Code:
Instruction Hours: 2	Credits: 2	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cog nitiv e Lev el	K1 -Recalling K2 -Understanding K3 -Applying K4 - Analyzing K5 - Evaluating K6 - Creating
Course Objecti ves:	 To bring about awareness to the various branch of Zoology available to get self employment opportunity. To generate employments. To motivate to become entrepreneurs. Skill to develop apiculture in their own house. Ability to produce vermicompost.
Unit I	Vermiculture : Common species – <i>Eigenia, Endrilues</i> and <i>Perionix excavates</i> . Biology of Earthworm – Vermicomposting – Required conditions- Methods (Pit & Heap) – Advantages - Economic importance. 6 Hours
Unit II	Apiculture – Species of Honey Bee, Types of Honey Bee – Newton's Bee hive – Care and Management – Honey extraction, Extracting Equipments – Nutritive and Medical value of Honey. Advantages – Economic importance of Apiculture.) 6 Hours
Unit III	Lac Culture – Types of Lac - Life cycle of Lac insect – Harvesting and Extraction of Lac- Uses of Lac – Enemies of Lac - Economic importance of Lac. Sericulture: Importance of sericulture- Types of silkworm – Methods of sericulture- Rearing of silkworm - Life cycle of Bombyx mori – Economic importance of Silk. 6 Hours
Unit IV	Aquaculture —Definition — salient characters of aquaculture-Types of aquaculture practices - Construction and Management of Pond. Culture practices of Common carp. Shrimp Culture—Penaeus monodon. Pearl culture. 6 Hours
Unit V	Poultry farming – Types of Poultry – Care and Management – Poultry Nutrition – Diseases and their management – Composition and Nutritive value of egg – Economics of Poultry production. 6 Hours

- 1.PILA, T.V.R 1988, Aquaculture principles and practices. Fishing news books.
- 2.RAMASAMY. P. 1992 Disease of Shrimps in Aquaculture systems, Vanitha publication

Reference Books:

- 1. SANTHANAM R 1987 Fisheries science Daya publishing house.
- 2. SHUKLA G.S and UPADHYAY V.B 1997 Economics Zoology Rastogi publications, Meerut.
- 3. ARUMUGAM N Aquaculture Saras publications.
- 4. MORSE R.A 1990 The ABC and XYZ of Bee Culture 40th Edition A.I Root & Co Ohio.
- 5. MARY VIOLET CHRISTY.A. Vermitechnology, MJP Publishing, Chennai.

e-Resources:

- 1.https://growingspaces.com/what-is-vermiculture/
- 2. https://www.nal.usda.gov/animal-health-and-welfare/beekeeping
- 3. http://ekrishiuasb.karnataka.gov.in/ItemDetails.aspx?depID=4&subDepID=%202&cropID=0

Course Outcomes:

On completion of the course the <u>learner</u> will be able

CO 1:	Learn the courses with excitement of biology along with the self employment opportunity in Vermiculture.
CO 2:	Students interested in entrepreneurship and start some small business based on their interest and experience on apiculture.
CO 3:	Ability to impart complex technical knowledge relating to economic importance of Lac and sericulture.
CO 4:	Work precisely in aquaculture field by learning culture practice and construction, management of pond.
CO 5:	Familiar with poultry farming to generate employment opportunity.

Mapping of COs with POs & PSOs

CO/PO	PO			PSO						
	1	2	3	4	5	1	2	3	4	5
CO1	S	M	S	M	S	S	M	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	M	S	M	S	S	M	S
CO4	S	S	S	M	S	M	S	S	S	S
CO5	S	S	S	S	S	S	S	M	S	S

S- Strongly correlating M-Moderately Correlating W-Weakly Correlating N-No Correlation

Semester-III/ Skill Enhancement Course-III	SEC III – POULTRY SCIENCE	Course Code:
Instruction Hours: 2	Credits: 2	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive Level	K1 -Recalling K2 -Understanding K3 -Applying K4 - Analyzing K5 - Evaluating K6 - Creating
Course Objectives:	 To understand the basics in poultry science. To understand the management strategy To Understand the economic importance of Poultry Skill in observing poultry diseases. Skill to become an entrepreneur
Unit I	Introduction of Poultry Science – History & Development of Commercial Poultry Industry in India. Classification and Types of Fowls. Housing and Equipments – Construction of Poultry shed, Deep litter system, Cage system. Farming practices of Emu, Turkey, Quail and their importance. 6 Hours
Unit II	Poultry Nutrition – Feed formulation for Chicks, Growers, Phase I to Phase III Layers & Broilers. Processing and Preservation, Feed additives. Nutrient requirements of chickens. 6 Hours
Unit III	Poultry Breeding –Breeding principles - Breed selection methods - Methods of mating- Incubation, Hatchery Management. Brooding, Debeaking – Vaccination, Sanitation and Waste disposal. 6 Hours
Unit IV	Economically important Poultry diseases Bacterial [Salamonellosis, Pasteurellosis, E.Coli infection], Viral [Ranikhet disease, Fowl pox infections, Bronchits Infection, Bursal disease], Fungal [Aflatoxicosis, Ochratoxicosis], Protozoan [Coccidiosis] – Ticks and Mites – Prevention and Control 6 Hours
Unit V	Composition and Nutritive value of egg — Microbial spoilage — Preservation and storage of egg. Poultry meat — Care and Management of Slaughtering — Preservation of Poultry meat — Marketing of Poultry meat. Economic importance of Chicken. 6 Hours

- **1. BANERJEE, G.C** (1992) A Text book of Animal Husbandry, Oxford and IBM Publishing & co., New Delhi.
- 2. SHUKULA, G.S and UPADHYAY, V.B (1997) Economic Zoology, RakeshRastogi Meerut

Reference Books:

- 1. M.R. GNANAMANI Modern aspects and commercial Poultry keeping Deepam Publication.
- 2. JAGADISH PRASAD Animal Husbandry & Dairy Science.
- 3. GOVE HAMBIDGE (2012) Diseases and Parasites of Poultry. Published by Biotech Books, New Delhi.
- 4. KEITH WILSON (2007) A Hand book of Poultry Practice. Published by Agrobios, Jodhpur.
- 5. RAM PRAKASH SINGH (2008) Published by Biotech Books, New Delhi.

e- Resources:

- 1. https://www.msdvetmanual.com/poultry/nutrition-and-management-poultry/nutritional-requirements-of-poultry.
- 2. https://www.sciencedirect.com/topics/veterinary-science-and-veterinary-medicine/poultry-nutrition
- 3. <a href="https://www.agropustaka.id/wp-content/uploads/2020/04/agropustaka.id_buku_commercial-Poultry-Nutrition-3rd-uploads/2020/04/agropustaka.id_buku_commercial-Poultry-Nutrition-3rd-uploads/2020/04/agropustaka.id_buku_commercial-poultry-Nutrition-3rd-uploads/2020/04/agropustaka.id_buku_commercial-poultry-Nutrition-3rd-uploads/2020/04/agropustaka.id_buku_commercial-poultry-Nutrition-3rd-uploads/2020/04/agropustaka.id_buku_commercial-poultry-Nutrition-3rd-uploads/2020/04/agropustaka.id_buku_commercial-poultry-Nutrition-3rd-uploads/2020/04/agropustaka.id_buku_commercial-poultry-Nutrition-3rd-uploads/2020/04/agropustaka.id_buku_commercial-poultry-Nutrition-3rd-uploads/2020/04/agropustaka.id_buku_commercial-poultry-Nutrition-3rd-uploads/2020/04/agropustaka.id_buku_commercial-poultry-Nutrition-3rd-uploads/2020/04/agropustaka.id_buku_commercial-poultry-Nutrition-3rd-uploads/2020/04/agropustaka.id_buku_commercial-poultry-Nutrition-3rd-uploads/2020/04/agropustaka.id_buku_commercial-poultry-Nutrition-3rd-uploads/2020/04/agropustaka.id_buku_commercial-poultry-Nutrition-3rd-uploads/2020/04/agropustaka.id_buku_commercial-poultry-Nutrition-3rd-uploads/2020/04/agropustaka.id_buku_commercial-poultry-Nutrition-3rd-uploads/2020/04/agropustaka.id_buku_commercial-poultry-Nutrition-3rd-uploads/2020/04/agropustaka.id_buku_commercial-poultry-Nutrition-3rd-uploads/2020/04/agropustaka.id_buku_commercial-poultry-Nutrition-3rd-uploads/2020/04/agropustaka.id_buku_commercial-poultry-Nutrition-3rd-uploads/2020/04/agropustaka.id_buku_commercial-poultry-Nutrition-3rd-uploads/2020/04/agropustaka.id_buku_commercial-poultry-Nutrition-3rd-uploads/2020/04/agropustaka.id_buku_commercial-poultry-Nutrition-3rd-uploads/2020/04/agropustaka.id_buku_commercial-poultry-Nutrition-3rd-uploads/2020/04/agropustaka.id_buku_commercial-poultry-Nutrition-3rd-uploads/2020/04/agropustaka.id_buku_commercial-poultry-Nutrition-3rd-uploads/2020/04/agropustaka.id_buku_commercial-poultry-Nutrition-3rd-uploads/2020/04/agropustaka.id_buku_commercial-poultry-Nutrition

Course Outcomes:

On completion of the course the learner will be able

	1
CO 1:	Know commercial poultry industry in India
CO 2:	Understand types of poultry, feed formulation and additives
CO 3:	Have practical knowledge on poultry breeding processes, waste disposal and sanitation.
CO 4:	Aware of poultry disease prevention and control measures.
CO 5:	Familiar with management of slaughtering, marketing of poultry meat and its economic importance.

Mapping of COs with POs & PSOs

CO/PO	PO				PSO					
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	M	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	M	S	M	S	S	M	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	M	S	M	S	S	M	M	S

S- Strongly correlating, M-Moderately Correlating

W-Weakly Correlating N-No Correlation

Semester-1V / Core Course-IV	CC -IV - ENVIRONMENTAL BIOLOGY	Course Code:
Instruction Hours: 5	Credits: 5	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cogni tive Level	K1 -Recalling K2 -Understanding K3 -Applying K4 - Analyzing K5 – Evaluating K6 - Creating
Course Objectiv es:	 Learn the role of Biotic and Abiotic factors in the environment. Know the principle and concept of ecosystem and Biogeochemical cycles. Understand the community ecology. Know the environmental pollution and biomagnifications. Learn the energy crisis of the environment.
Unit I	Definition – Branches of ecology; Environment: Atmosphere (Air), Hydrosphere (Water), Lithosphere (Soil); Abiotic factors: Temperature and light – Effects of light and temperature on animals. Biotic factors: Animal association – symbiosis, Commensalism, Mutualism, Antagonism, Antibiosis, Parasitism, Predators and Competition.
Unit II	Ecosystem; Natural ecosystem and Man-made ecosystems - Trophic levels, Energy flow, Ecological pyramids and Productivity - Food chain and Food Web. Principles and concepts of Biogeochemical cycles- carbon, oxygen and nitrogen, Habitat Ecology: Fresh Water, Marine Water and Terrestrial habitat. 18 Hours
Unit III	Community Ecology: Types of Communities; Characteristics of Community – Stratification - Community interdependence – Ecotone - Edge effect; Ecological Niche – Ecological succession. Population ecology: Population Size and Density, Natality, Mortality, Age Structure, Biotic Potential, Population Dynamics, Emigration and Immigration; forest and agriculture, aquatic resources and their conservation. 18 Hours
Unit IV	Environmental Pollution: Air, Water, Land, Noise, Thermal and Radiation. EIA, GIS, Global warming and Biomagnifications. Biological indicators and their role in environmental monitoring. 18 Hours

Unit V	Environmental conservation and management Energy Crisis: Conventional Sources of Energy-Coal, Oil and Natural Gas, Thermal Power, Nuclear power- Non-Conventional sources of Energy – Solar, Wind, Tidal, Wind and Bio- energy. Wildlife conservation – Sanctuaries and National parks.
	18 Hours

- 1. Sharma, P.D. 2010 (Tenth Edition) Ecology and Environment, Rastogi Publications, Meerut.
- 2. Verma P.S. and V.K. Agarwal, 2007. Environmental Biology. S. Chand and Co., NewDelhi.

Reference Books:

- 1. Clarke, G.L. 1954–Elements of Ecology, John Wiley & Sons. N.Y.
- 2. Odum E.P.1971. Fundamentals ofecology.W.B.Saunders Co., Philadalphia.
- 3. Kendeigh, S.C., 1961 Animal Ecology, Prentice Hall.
- 4. S.S. Purohit, D.H. Shanmiand A.K. Agarwal, 2004 Environmental Sciences: A New Approach, Agrobix, Jodhpur.
- 5. Arumugam, N. 2009. Concepts of ecology. Saras publications, Nagarkoil.
- 6.Verma, P.S and V.K. Agarwal. 2007. Cell biology, Genetics, Molecular Biology, Evolution and Ecology. S.Chand and Company ltd. NewDelhi.
- 7. Claude, F., Christiane, F., Paul, M. and Jean, D. 1998. Ecology Science and Practice. Oxford & IBH Publishing Co .Pvt Ltd. ,Delhi.
- 8.Rastogi, V.B. and M.S. Jayaraj. 1997. Animal ecology and distribution of animals. Kedarnath, Ramnath.

e- Resources:

- 1. https://education.nationalgeographic.org/resource/ecosystem/
- 2. https://www.eea.europa.eu/help/glossary/eea-glossary/natural-ecosystem
- 3. https://www.enelgreenpower.com/learning-hub/environmental-pollution

Course Outcomes:

On completion of the course the learner will be able

CO 1:	Compare the role of Biotic and Abiotic factors in the environment and animal association
CO 2:	Able to interpret the principle and concept of natural and made ecosystem and Biogeochemical cycles.

CO 3:	Understand the community ecology and population dynamics
CO 4:	Estimate the environmental pollution and biomagnifications.
CO 5:	Interpret the conventional and non conventional energy resources of the environment and terrestrial resources

Mapping of COs with POs & PSOs

CO/PO	PO					PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	M
CO5	S	S	S	S	M	S	S	S	S	M

S- Strongly correlating
M- Moderately Correlating
W-Weakly Correlating
N-No Correlation

Semester-IV/ Non Major Elective-II	NME-II - AQUARIUM KEEPING	Course Code:
Instruction Hours: 2	Credits: 2	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive Level	K1 -Recalling K2 - Understanding K3 -Applying K4 - Analyzing K5 - Evaluating K6 - Creating
Course Objectives:	 To create knowledge on self employment opportunity of ornamental fishes To provide the knowledge of ornamental fishes and their equipment To understand the different breeding techniques of ornamental fishes To know about the Diseases and their control To learn about Breeding
Unit I	Introduction and scope - Aquarium fish keeping as hobby and cottage industry. Commercial aspects like national and international market. To create knowledge on self employment opportunity. 18 Hours
Unit II	External morphology of a typical fish. Exotic and endemic varieties of ornamental fishes Hours
Unit III	Aquarium preparation and maintenance - Kinds of tanks, tank setting, biological filter and aeration, water management, planting, lighting and feeds. Budget for setting up an Aquarium Fish Farm as a Cottage Industry. 18 Hours
UNIT IV	Live fish transport- handling, feeding and forwarding techniques of fish. Fish Diseases and their control. 18 Hours
UNIT V	Breeding – Common characters and sexual dimorphism of Fresh water and Marine aquarium ornamental fish varieties such as Guppies, Mollies, Sword tails, Platy, Siamese fighters and Gold fish, Butterfly fish, Blue morph and Anemone fish. 18 Hours

REFERENCE BOOKS:

- 1. Santhanam, P., Sukumaran, N. & P. Natarajan, A manual of freshwater aquaculture (1987), Reprint 1999, Oxford & IBH Publishing Company Pvt., Ltd., New Delhi.
 - 2. Cliff Harrison, A colour guide to Tropical Fish (1980), Chartwell Books, INC, Cerkshire, printed in Hon Kong.

Text Book:

- 1. Mill Dick, 1993: Aquarium Fish, Daya Pub.co., New Delhi
- 2. Sanjib saha and Mayukhmala Concept of Aquarium Fish Keeping (2024) Arco Publishing Company, INC New York.
- 3. O'Connell, R. F., The freshwater aquarium (1977), Arco Publishing Company, INC New York.
 - 4. Jingran V.G., 1991: Fish and Fisheries in India Hindustan Publ.co. New Delhi

e.Resources:

- 1.https://www.petstock.com.au/blog/articles/how-to-setup-a-fish-tank
- 2. https://www.petmd.com/fish/setting-freshwater-aquarium
- 3. https://www.aquariumcoop.com/blogs/aquarium/how-to-set-up-a-fish-tank

Course Outcomes

On completion of this course, students will;

CO1	Students to learn about different ornamental fishes and identify the diseases of them
CO2	To develop entrepreneur potential in the field of aquarium and get self employment
CO3	To learn setting up an Aquarium
CO4	To gain knowledge on Live fish transport
CO5	To gain Knowledge about culture of ornamental fish culture

Mapping of Cos with Pos & PSOs

CO/PO	PO					PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	M	S	S	S	S	S
CO2	S	S	S	S	M	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

S- Strongly correlating

M-Moderately Correlating

W-Weakly Correlating

N-No Correlation

Semester-IV / Ability Enhancement Course- I	AEC I – BIOINSTRUMENTATION	Course Code:
Instruction Hours: 2	Credits: 2	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive Level	K1 –Recalling K2 -Understanding K3 -Applying K4 -Analyzing K5 Evaluating K6 - Creating
Course Objectives:	 This course will give an understanding about the working principles, construction and applications of the instruments used in the studies related to various disciplines of Biological sciences Understand the mechanism of different microscope Know different spectroscopy Familiar cell separation technique Hands on training in advanced electrophoresis technique
Unit I	Basic Instruments Principles, operation protocol & applications of the following instruments: Weighing balance, pH meter, Polarography, Radioactivity, ECG, FTIR. 6 Hours
Unit II	Microscopy Observation of different microbes. Light – Bright & Dark field; Phase contrast, Inverted Phase contrast; Fluorescent, Electron – TEM & SEM; Confocal. 6 Hours
Unit III	Spectroscopy Colorimeter, Spectrometer, UV visible spectrometer, X – ray spectrometer, ELISA reader, Atomic absorption spectrometer, Flame photometer, Flourimeter & Spectro photometer 6 Hours

Unit IV	Separation Techniques Centrifugation - Principle, operation, types & applications. Chromatography - Principle, operation & applications - Paper – ascending, descending & Circular, TLC, HPTLC, GC, HPLC, Column Chromatography, Ion Exchange & Affinity Chromatography, LC – MS. 6 Hours
Unit V	Electrophoresis Native & denatured - zone, iso-electro focusing & Isotachophoresis 1D & 2D. PCR, MALDI-TOF 6 Hours

- 1. S.SADASIVAM., A. MANICKAM. 1996. Biochemical Methods. 2nd Edition. New Age International (p) Ltd, Publishers.
 - 2. DR. G.RAJAGOBAL., DR. B.D.TOORA. 2001. Practical Biochemistry. 1st Edition. Ahuja Book Company Pvt.Ltd.

Reference Books:

- 1. JAYARAMAN. 2000. Laboratory Manual in Biochemistry. New Age International (p).
- 2. PLUMMER MU, DAVID T.PLUMMER. 1988. Introduction to Practical Biochemistry. Tata McGraw-Hill Education.
- 3. M. MOOYOUNG. 1985. Comprehensive Biotechnology. Vol. 2, 3 & 4. Pergamon press.

e-Resources:

- 1. https://www.atascientific.com.au/spectrometry/
- 2. https://academic.oup.com/jmicro
- 3. https://www.cleaverscientific.com/what-is-electrophoresis/

Course Outcomes:

On completion of the course the learner will be able

CO 1:	Learn the concept of basic instruments such as pH, Electronic balance, ECG,FTIR and radioactivity and explore its role in various fields
CO 2:	Understand the principles behind the usage of different microscope.
CO 3:	Apply their knowledge in the principle and instrumentation of various separation techniques
CO 4:	Analyze the working and sedimentation mechanism of different centrifuge

CO 5: Understand how electrophoresis separate DNA, RNA, or protein molecules based on their size and electrical charge.

Mapping of COs with POs & PSOs

CO/PO	PO					PS()			
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	M	S	M	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	M	S	S	M	S	S	M	S
CO5	S	S	S	S	S	S	S	S	S	S

S- Strongly correlating M-Moderately Correlating W-Weakly Correlating N-No Correlation

Semester-V/ Core Course-V	CC V - ANIMAL PHYSIOLOGY	Course Code:
Instruction Hours: 5	Credits: 5	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cogniti ve Level	K1 -Recalling K2 -Understanding K3 -Applying K4 - Analyzing K5 - Evaluating K6 - Creating
Course Objectives:	 Understand the Nutritional requirement of food and its metabolism. Study the structure and function of respiration. Acquire in depth knowledge about the Excretion. Understand the functions of receptors and bioluminescence. Understand the role of endocrine organs in human.
Unit I	Nutrition-Food requirements-Carbohydrates, Proteins, Fats, Minerals, and Vitamins. Digestive-enzymes and their role in digestion — metabolism of Protein, Carbohydrates and Lipids. Absorption and assimilation of digested food materials. Balanced diet, BMR and BMI. 18 Hours
Unit II	Respiration- Structure of mammalian lungs and gaseous exchange-Transport of CO2. Circulation: Structure of mammalian heart and its working mechanism — Heart beat and Cardiac cycle. Myogenic and neurogenic hearts. Properties and Functions of blood - ECG - Blood Pressure - factors contributing to heart problems. 18Hours
Unit III	Excretion - Nitrogenous waste material and their formation. Structure and function of mammalian kidney and nephron - mechanism of urine formation. Osmotic and ionic regulation by freshwater and marine animals. Muscles - structure and types of muscles -mechanism of muscle contraction. 18 Hours

Unit IV	Structure of nerve cell. Conduction of nerve impulse, Structure of synapse, mechanism of synaptic transmission –Neurotransmitters. Bioluminescence – Biological clocks. Receptors: types, Photoreceptor - Structure of Human eye - Physiology of vision, Phonoreceptors – Structure of Human ear- organ of Cortiworking mechanism. 18 Hours
Unit V	Endocrine glands — structure and hormones of Hypothalamus, Adenohypophysis, Neurohypophsis, Pineal gland, Thyroid gland, Parathyroid, Thymus, Adrenal and Pancreas. Endocrine control of mammalian reproduction. — Male and female hormones — Hormonal control of Menstrual cycle in humans. Hormones of insects.

- 1. Rastogi, S.L., 1997. Essential of Animal Physiology. New Age International Publisher, NewDelhi.
- 2. Verma, P.S. and V.K. Agarwal.1992. Animal Physiology. S. Chand and Co. NewDelhi.

Reference Books:

- 1. Mariakuttikan and N.Arumugam, 2002. Animal Physiology. Saras Publication, Nagarcoil.
- 2. Sambasivaiah, Kamalakararao and Augustine Chellappa 1990. A Text book of Animal Physiology and Ecology, S. Chand& Co., Ltd., New Delhi 110 055.
- 3. Parameswaran, Anantakrishnan and AnantaSubramananiam, 1975. Outlines of Animal Physiology, S. Viswanathan Pvt.Ltd.,
- 4. William S. Hoar, 1976. General and Comparative Physiology, Prentice Hall of India Pvt. Ltd., NewDelhi.
- 5. Wood, D.W., 1983. Principles of Animal Physiology 3rd Ed.,
- 6. Prosser, C.L. Brown 1985. Comparative Animal Physiology, Satish Book Enterprise, Agra 282003.

e- Resources:

- 1. https://www.uoanbar.edu.iq/BasicEducationCollege
- 2. https://www.researchgate.net/publication/376232222 Animal Physiology
- 3. https://repository.poltekkes-kaltim.ac.id/

Course Outcomes:

On completion of the course the learner will be able

CO 1:	Know the role of nutrition in human and its source, types and importance
CO 2:	To understand the mechanism of human respiration
CO 3:	Understand the mechanism of respiration in human.
CO 4:	Recognize the complimentary relationship of structure and function of nerves and describe the interactions between different organ systems to maintain homeostasis.
CO 5:	Able to explain the receptors and biological rhythmsin response to internal and external environmental changes.

Mapping of COs with POs & PSOs

CO/PO	PO				PO PSO					
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	M	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	M

S- Strongly correlating M-Moderately Correlating W-Weakly Correlating N-No Correlation

Semester-V / Core Course - VI	CC VI GENETICS	Course Code:
Instruction Hours: 5	Credits: 5	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive	K1 -Recalling
Level	K2 -Understanding
	K3 -Applying
	K4 - Analyzing
	K5 - Evaluating
	K6 - Creating
Course	
Objectives	1. 1.To understand the structure and functions of nucleic acids
	2. To know the causes and effects of mutations
	3. To comprehend the importance of genetic variation in evolution
	4. To know about the harmful effects of genetic variations in humans, their
	cumulative effect in human population and the molecular basis of
	variations.
	5. To understand the Molecular Genetics
Unit I	Mendelian Genetics and Inheritance: Mendelian genetics: Mendelian
	experiments, laws of Mendel, Monohybrid, Dihybrid, back and test cross;
	Interaction of genes: Incomplete dominance, co dominance, complementary
	genes, supplementary genes, inhibiting genes, lethal genes and atavism.
	Inheritance: Polygenic inheritance- skin colour; multiple alleles- ABO blood
	groups and coat colour in rabbit; extra chromosomal inheritance- shell coiling,
	kappa particles; sex linked inheritance – eye colour in Drosophila, colour
	blindness and hemophilia in man.
	18 Hours
	Linkage and Crossing Over: Linkage: Linked genes, complete and incomplete
Unit II	linkage. Crossing over: molecular mechanisms of crossing over, kinds of crossing
	over, models of recombination. Chromosome mapping: inference and coincidence,
	haploid mapping, somatic cell hybridization.
	18 Hours
Unit III	Cytogenetics: Variation in chromosome number and structure: position effect,
	chromosomal mutation and evolution. Gene mutation: types, molecular basis of
	mutation, mutational hot spots, reversion; radiation and chemical agents as
	mutagens; Detection of mutation - ClB method and muller-5 method.
-	18 Hours
Unit IV	Human and Microbial Genetics: Human genetics: Karyotype and ideogram;
	sex determination - Barr body technique, drumstick method; chromosomal
	abnormalities in humans, Pedigree analysis; diagnosis of genetic abnormalities;
	Eugenics, Euphenics, and Euthenics. Population genetics and evolution: gene

	pool, gene frequency and genotype frequency; Hardy-Weinberg law of equilibrium. Unit 5: Bacterial genetics: Conjugation, transformation, transduction and chromosome mapping.
	18 Hours
Unit V	Molecular Genetics: Insertion elements, transposable elements, retroelements; integrons and antibiotic resistance cassettes; the lactose system and operon model, tryptophanoperon, role and relative positions of promoters and operators, feedback mechanism.
	18 Hours

Text Books

- 1. Guptha G. K., 2013. Genetics Classical to Modern, Rastogi publishers, Meerut.
- 2. Veer Bala Rastogi., 2019. Text Book of Genetics, Medtech
- 3. Verma P. S. and V. K. Agarwal., 2018. Genetics, S. Chand & Company Pvt Ltd.

References Books

- 1. Cooper, Geoffrey M., 2018. The cell: A Molecular Approach, Eighth Edition, Oxford University Press.
- 2.De Robertis, E. D. P and E.M.F Robertis, 2017. Cell and Molecular Biology 8th Edition, LWW.
- 3.Fletcher H and Hickey I., 2015. Genetics, IV Edition. GS, Taylor and Francis Group, New York and London.
- 4. Russel, Peter J. 2013. Genetics: A Molecular Approach, Pearson.

Web Resour

- 1. https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/molecular-genetics
- 2. https://www.ncbi.nlm.nih.gov/books/NBK7908/
- 3. https://www.toppr.com/ask/question/linkage-and-crossingover

Course Outcomes

On completion of this course, students will

CO1	Understand the basis of inheritance and expression of genes.
CO2	Correlate changes in genetic makeup and phenotypic changes in progeny.
CO3	Analyse the causes of variations in genetic material and predict the effect in a population using different techniques.
CO4	Explain the role of cellular processes and different genetic elements in the expression of genes.
CO5	Compile the factors which contribute to changes in gene expression and specify the changes which contribute to evolution.

Mapping of Cos with Pos & PSOs

CO/PO		I	PO PSO							
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	M	S	S	S	S	S
CO2	S	S	S	S	M	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

S- Strongly correlating W-Weakly Correlating

N-No Correlation, M-Moderately Correlating

Semester-V / Core Course- VII	CC VII BIOTECHNOLOGY	Course Code:
Instruction Hours: 5	Credits: 4	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive	K1 -Recalling
Level	K2 -Understanding
	K3 -Applying
	K4 - Analyzing
	K5 - Evaluating
	K6 - Creating
	Know the application of biotechnology in Biological sciences
Course	Well known the mechanism of gene transfer in prokaryotes
Objectives	Learn the role of genetic engineering in human welfare.
Objectives	Understand the molecular markers and its application in biotechnology
	Know the role of microbes in bioremediations
UNIT I	Biotechnology –Definition, Scope and Importance – Applications of Biotechnology. Genetic Engineering and Gene Cloning: Tools of Genetic Engineering: Enzymes - Gene cloning vectors - pBR 322 Plasmid, Ti plasmid, pSV plasmid and simian virus 40. Preparation of desired DNA; <i>In vitro</i> construction of rDNA. 18 Hours
	Gene Transfer Mechanisms: Bacterial Conjugation, Transformation,
UNIT II	Transfection, Transduction, Microinjection, Electroporation, Microprojectile, Shot Gun method, Ultrasonication, Liposome fusion, Microlaser. Selection (Screening) of Recombinants: Immunochemical Method and Colony Hybridization - Gene cloning in prokaryotes - Gene library and cDNA library. 18 Hours
	Genetic Engineering for Human Welfare: Production of Insulin, Somatotropin
UNIT III	(HGH), Human Interferons, Vaccine and their applications; Transgenic animals and their uses. Animal Biotechnology: Requirements for Animal cell culture – Maintenance and storage of Cell lines -Methods for Cryopreservation - Cell Bank–Animal Bioreactors and their uses 18 Hours
	Molecular markers and their applications: Restriction Fragment Length
UNIT IV	Polymorphism(RFLP) – Random Amplified Polymorphic DNA (RAPD) – Minisatellites or Variable Number of Tandem Repeats (VNTRs) – Microsatellites (SSRs); PCR (Amplification of DNA) – Applications of PCR Technology. DNA sequencing methods: Sanger's method and Automatic DNA sequencing; DNA Fingerprinting– Applications of DNA fingerprinting. 18 Hours
	Environmental Biotechnology: Waste treatment-anaerobic and aerobic
UNIT V	treatment. Microorganisms in Pollution control – Bioremediation, Biological Bleaching, Biomass Production, Bio-fuels and Bio-prospecting. 18 Hours

TEXT BOOK

- 1. Dubey, R.C. 2014. A Text book of Biotechnology. S. Chand and Company Ltd, NewDelhi.
- 2.Gupta, P.K.2004.Biotechnology and Genomics (1stEdition) Rastogi Publications.

References Books

- 1. Kumerasan, V. 2014. Biotechnology (Revised Edition), Saras Publications, Kanyakumari.
- 2. Ignacimuthu, S.J.2002. Basic Biotechnology. Tata McGraw Hill Publishing Company, Ltd., NewDelhi.
- 3.Das, H.K. 2005. Text book of Biotechnology (Second edition). Wiley Dreamtech India (P) Ltd., NewDelhi.

Web Resources

- 1. http://www.bbtech.sc.chula.ac.
- 2. https://boku.ac.at/en/ifa-tulln/institut-fuer-umweltbiotechnologie
- 3. https://www.khanacademy.org/science/ap-biology/gene-expression-and-regulation/mutations-ap/a/genetic-variation-in-prokaryotes

Course Outcomes

On completion of this course, students will be able

CO1	Know the different breeds and dairy development in India.
CO2	Identify cattle nutrition, preservation of green fodder, feed additives and feed formulations
CO3	Ability to impart complex technical knowledge relating to dairy reproductive physiology and disease control measures
CO4	Ability to have critical thinking and efficient problem solving skills in the milk secretion, chemistry and microbiology of milk
CO5	Capability for asking relevant/appropriate questions relating to issues and problems in the field of dairy products

Mapping of COs with POs & PSOs

CO/PO		F		PSO						
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	M	S	S	S	S	S
CO2	S	S	S	S	M	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

S- Strongly correlating

M-Moderately Correlating

W-Weakly Correlating

N-No Correlation

Semester : V / Core Course : VIII	CC VIII - MICROBIOLOGY	Course Code:
Instruction Hours: 5	Credits: 4	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive Level	K1 -Recalling K2 -Understanding K3 -Applying K4 - Analyzing K5 - Evaluating K6 - Creating
Course Objectives:	 Learn classification of microbes, structure and economic importance of microbes. Ability to do sterilization of microbes and culture methods. Know the microorganism in extreme environment. Know the food born infection and quality of food. Skilled in diagnosis of disease causing microbes.
Unit I	History and Scope of microbiology - Classification of microbes. Structure of a bacterium. Bacterial respiration and reproduction – economic importance of bacteria. Classification of viruses- physical and chemical structures of viruses on the basis of capsid symmetry - enveloped (Herpes virus), helical (TMV) and icosahedral (Polyomaviruses), complex (Bacteriophage) and Virion. 15 Hours
Unit II	Concept of Sterilization - Physical and Chemical methods of sterilization. Stains and staining techniques. Bacterial nutrition and Growth- Nutritional types. Growth factors, Types of culture - culture media- Isolation of pure culture - Colony morphology and growth- Growth curve and Growth kinetics. 15Hours
Unit III	Microbiological analysis of water purity- Microorganisms in fresh water and marine water. Microorganisms of different soils - interactions with the atmosphere. Microorganisms in extreme environments-Thermophilic, Methanogenic and Halophilic. Photosynthetic bacteria, Cyanobacteria some Archaea who live in extreme conditions like cold, and space. 15 Hours

Unit IV	Food borne infections and intoxications - Clostridium, Salmonella, and Staphylococcus –microtoxins in food with reference to Aspergillus species- Quality assurance- microbiological quality standards of food, government regulatory practices and policies- FDA, EPA. 15 Hours
Unit V	Morphological characteristics-Parthenogenesis, laboratory diagnosis and treatment of any five disease causing Protozoa, Bacteria, Virus and Fungus. Prevention and control. 15Hours

- 1. Dubey R.C, D.U. Maheshwari 2005. A Text book of Microbiology, S.Chand and company Ltd, NewDelhi.
- 2. Rao, A.S. 2001. Introduction to Microbiology. Prentice Hall of India Private Limited, NewDelhi.

Reference Books:

- 1. Pelczar, M.J., Chan, E.S., Kreig, N.R. 1993. Microbiology (Fifth edition). Tata McGraw-Hill Publishing Company Ltd., NewDelhi.
- 2. Purohit, S.S. 2005. Microbiology Fundamentals and applications (Sixth Edition). Student edition, Jodhpur.
- 3. Raman Rao, P.V. 2005. Essentials of Microbiology. CBS Publishers and Distributors, NewDelhi.
- 4. Malacinski, M.G. 2006. Essentials of Microbiology Narosa Publishing House, NewDelhi.
- 5. Narayanan, L.M., Selvaraj, A.M and N.Arumugam. 1999. Microbiology Saras Publication, Nagercoil.
- 6. Ananthanarayanan, R. and JayaramanPaniker, C.K. 1990. Text Book of Microbiology. Orient LongmanLtd.,

e- Resources:

- 1. https://dchealth.dc.gov/service/food-borne-infections-and-intoxications
- 2. https://www.rapidmicrobiology.com/test-method/theory-and-practice-of-microbiological-water-testing
- 3. http://nexusacademicpublishers.com/uploads/portals/History and Branches of Microbiology. pdf

Course Outcomes:

On completion of the course the learner will be able

CO 1:	Understand the economic importance of microbes.
CO 2:	Hands on training in culture of microbes.
CO 3:	Know the microorganism in different environment and its effect on human.
CO 4:	Know the pathogenic organisms and standards of food.
CO 5:	Hands on training in the laboratory diagnosis of disease causing microbes.

Mapping of COs with POs & PSOs

CO/PO			PO			PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

S- Strongly correlating M- Moderately Correlating W- Weakly Correlating N- No Correlation

Semester-V/ Core Practical III	CP III - CORE PRACTICAL III (CC V,VI,VII,VIII)	Course Code:
Instruction Hours: 3	Credits: 3	Exam Hours: 3
Internal Marks -40	External Marks-60	Total Marks: 100

Cognitive Level	K1 -Recalling K2 -Understanding K3 -Applying K4 - Analyzing K5 - Evaluating K6 - Creating
Course Objectives:	 To learn qualitative and quantitative tests of macromolecules To get hands on training to operate the instrument To learn the mendelian's concepts To observe the evolutionary characters of an animals To learn the basic technique of microbiology laboratory
Unit I	Animal Physiology 1. Qualitative and quantitative tests for proteins, 2. Qualitative tests for carbohydrates and fats 3. Human salivary amylase activity in relation to Temperature and pH. 4. Identification of Nitrogenous waste products 5. Enumeration of RBCs/WBCs by haemocytometer 12 Hours
Unit II	GENETICS: 1. Recording of Mendelian traits in Man, 2. Blood grouping of man, 3. Pedigree Analysis. 4. Gene interaction (Complementary gene interaction) 5. Models: Monohybrid and Dihybrid crosses. 6. Quantitative gene inheritance 7. Drosophila- Male and femaleidentification, Genetic importance, Mutants (Wing, body colour, eye colour). 8. sex linked inheritance —colour blindness in man 9. linkage —Margins experiment of Drosophila melanogaster 10. Development of physical linkage map by conventional method

	11. sex dextermination- Barr body from oral mucosa of a human female. 12 Hours
Unit III	Biotechnology: 1. Isolation of DNA from tissues 2. Plasmid isolation by demonstration. 3. PCR Technology. 4. Southern Blotting 5. Spotters: plasmid pBR322, Ti plasmid, and Simian virus.
Unit IV	 Microbiology Demonstration of sterilization procedure for culture media and equipment. Preparation of culture media for microbes, Serial dilution techniques (in groups) Isolation and Identification of microbes in water sample (demonstration and observations.) Fixing and gram staining of bacteria Hanging drop preparation of Lactobacillus.
V	Spotters: 1. Haemoglobinometer, 2. Kymograph, 3. Sphygmomanometer. 4. Models of Amino acids, Haemoglobin, ATP, Steroids. 5. Muscles: Cardiac muscle, Striated muscle, Non striated muscle 6. Models for DNA, RNA, tRNA Structure and DNA replication 7. Karyotypes of normal male and female. Klinefelter's syndrome, Turner's syndrome and Down's syndrome 8. Laminar Air flow, Autoclave, Petri-dish, Inoculation loop. Preparation of e museum and video clippings based on the core practical

- 1. Dr.K.Rama Rao, 2020.Developmental Biology practical manual, Satavuhana University.
- 2. Timothy G.Barraclough, The Evolutionary Biology of species. Oxford University Press.

References book

- 1. Verma P.S And V.K Agarwal 1992 Animal physiology S. Chand & Co.
- 2. Mariakuttian A & Arumugam N Animal Physiology Saras Publication
- 3. Dr. A. Amsath, 2021, Practical Manual in Zoology, MMA Publication. Pattukottai.
- 4. Anurudh K.singh, 2011, Practical manual, chromosome, Genes and Genomes, Maharshri, Dayanand University, Haryyanaa

e- Resources:

https://en.m.wikipedia.org
https:// www.nature.com
https://en.m.wikipedia.org
https://openoregon.pressbooks.pub

Course Outcomes:

On completion of the course the learner will be able

.CO 1:	Understand the water quality parameters
CO 2:	Able to examine the planktons.
CO 3:	Understand the animal associations.
CO 4:	Able to handle the basic immunological technique
CO 5:	To learn the lymphoid organs.

S- Strongly correlating M-Moderately Correlating W-Weakly Correlating N-No Correlation

Semester : V / Discipline Specific Elective –I	DSE-I. WILDLIFE BIOLOGY AND CONSERVATION MANAGEMENT	Course Code:
Instruction Hours: 3	Credits: 3	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitiv e Level	K1 -Recalling K2 -Understanding K3 -Applying K4 - Analyzing K5 - Evaluating K6 - Creating			
Course Objectives:	 To understand and discuss the importance of wildlife, its values, modern concepts in wildlife management, and relevant conservation policies. To assess and instil strong foundations on wildlife policies and be familiar with a variety of laws and regulations. To analyse and design appropriate approaches to turn conflict into tolerance and coexistence, with an emphasis on the human dimensions of human-wildlife interactions. To evaluate and integrate all the related areas like Fundamentals in Ecology, Forestry, Natural Resource Conservation approaches and develop the role PVA models for protection of Endangered species. To explain the advanced scientific basis for wildlife management and discuss National and International Efforts for successful wildlife conservation. 			
Unit I	Biodiversity Extinction and Conservation Approaches- Perspectives and Expressions. Identification and prioritization of Ecologically sensitive area (ESA). Coarse filter and fine filter approaches. Regional and National approaches for biodiversity conservation. 15 Hours			
Unit II	Theory and Analysis of Conservation of Populations: Stochastic perturbations - Environmental, Demographic, spatial and genetic stochastic. Population viability analysis-conceptual foundation, uses of PVA models. Management Decisions for small populations using PVA models. Minimum viable populations & recovery strategies for threatened species. 15 Hours			

Unit III	National and International Efforts for Conservation:- International agreements for conserving marine life, Ramsar convention), Conservation of Natural Resources. Overview of conservation of Forest &Grassland resources. CITES, IUCN, CBD National Forest Policy, 1988, National Wildlife Action Plan 2017-2031, Wildlife Protection Act 1972, National and State Biodiversity Action Plans and other Forests and Environmental Acts.
Unit IV	Wildlife in India - Wildlife wealth of India & threatened wildlife, Reasons for wildlife depletion in India, Wildlife conservation approaches and limitations. Wild life Habitat: Characteristic, Fauna and Adaptation with special reference to Tropical Forest. Protected Area concept: National Parks, Sanctuaries and Biosphere Reserves, cores and Buffers, Nodes and corridors. Community Reserve and conservation Reserves.
Unit V	Management of Wildlife: Distribution, status. Habitat utilization pattern, threats to survival of Slender Loris, Musk deer, Great Indian Bustard, Olive Ridley turtle. Wild life Trade & legislation, Assessment, documentation, Prevention of trade, Wild life laws and ethics. 15 Hours

- 1. Robinson W L and Eric G Bolen, 1984. Wildlife Ecology and Management, Maximillan Publishing Company, New York, p 478.
- 2. Aaron, N.M.1973 Wildlife ecology, W.H. Freeman Co. San Francisco, U.S.A.

Reference Books:

- 1. Gilas R H Jr.(ed.), 1984. Wildlife Management Techniques, 3rd ed. The Wildlife Society, Washington D.C., Nataraj Publishers, Dehra Dun, p 547.
- 2. Rodgers W A, 1991. Techniques for Wildlife Census in India A Field Manual: Technical Manual T M 2. WII.
- 3. Saharia V B, 1982. Wildlife of India, Natraj Publishers, Dehra Dun.
- 4. Goutam Kumar Saha and Subhendu Mazumdar, 2017. Wildlife Biology: An Indian Prospective, PHI Publisher, Delhi.
- 5. Katwal/Banerjee, 2002. Biodiversity conservation in managed and protected areas, Agrobios, India.
- 6. Ashok Shantilal Kothari and BomanFramji Chhapgar; Wildlife of the Himalayas and the Terai Region (Bombay Natural History Society)"

E-Resources:

- 1. https://libraryguides.uwsp.edu/c.
- 2. https://www.wildcru.org/research/wildlife-trade-references/
- $\textbf{3.} \quad \underline{\text{https://www.environment.sa.gov.au/topics/plants-and-animals/living-with-wildlife/principles-for-managing-wildlife} \\$

Course Outcomes:

On completion of the course the learner will be able

CO 1:	Understand the need of wildlife conservation and categories of IUCN
CO 2:	Know wildlife sanctuaries and National parks and Convention on wetlands of International Importance of wild animals
CO 3:	Learn wildlife census techniques and methods
CO 4:	Understand the importance of Zoo's and case study
CO 5:	Know wildlife protection Acts

Mapping of COs with POs & PSOs

CO/PO	PO			PSO						
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	M	S	M	S	M	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	M	M	M	S
CO5	S	S	S	S	S	S	S	S	S	S

S- Strongly correlating

M-Moderately Correlating

W-Weakly Correlating

N-No Correlation

Semester : V / Discipline Specific Elective -I	ELECTIVECOURSE-II FOOD AND NUTRITION	Course Code:
Instruction Hours: 3	Credits: 3	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive	K-1Acquire/Remember				
Level	K2-Understand				
	K3-Apply				
	K-4Analyze				
	K-5Evaluate				
	K-6Create				
Course	Course				
Objectives	Aims: To learn food sources and energy metabolism in differ	ent age			
	Group to keep healthy life.				
	Tocrateawarenessofrequirementofnutritionindifferen	ntage			
	group.				
	To know the diettherapy.				
	Toknowthebasalbodymetabolism.				
	Tounderstandthenutritiondeficiencyanddisorders				
UNIT	Content	No.ofHours			
I	Source food composition, properties and storage of common				
	foods, functions of food in relation to health – classification				
	of food based on nutrients, food preservation - food	12			
	additives. Types of food - bodybuilding foods, energy foods				
	and protective foods – Bomb colorimeter.				
		12			
II	Essential nutrients: fats, carbohydrates and proteins, Energy	12			
	needs. Definition of unit of energy – Kcal, RQ, SDA, NPU,				
	Basal metabolism – BMR – factors influencing BMR. Role of				
	fiber in diet.				

Ш	Micro and macro mineral nutrients: Distribution, sources, metabolic functions and deficiency manifestion vitamins— classification, sorce function sand Deficiency disorder—	12
	hyperandhypovitaminosis. Waterandelectilytebalance	
IV	Nutrition in different stages – Infants, children, adolescents, pregnant, lactating women and old persons.	12
V	Principles of diet therapy. Diet during stressed conditions, laborer and patients, therapeutic diets for anemia, malnutrition, obesity, diabetes mellitus and allergy.	12

TextBooks:

1. L.G.MEYERS,FoodChemistry,,CBS,2004,Puiblishers&Distributor

ReferenceBooks:

- 1. POLTER2001, Foodscience, CBS publishers & Distributers
- 2. SWAMINATHAN. M.S,, Essential of food nutritions, Vol I& II, Bangalore printing ANNIE FREDRICK, 2006 A Testbook of food and nutrition, lotus press.

Course Outcomes:

On completion of the course the learner will be able

CO 1:	Understand foodsources, types and its composition
CO 2:	Learntheessentialnutrientsandbasal bodymetabolism
CO 3:	Understandthemineralnutrientsanditsdeficiencydisorders.
CO 4:	Awareoftherequirement of nutrition in different age groups
CO 5:	Know the principles of diet therepy

MappingofCOs withPOs&PSOs

CO/PO	PO					PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	M	M	S
CO2	S	S	S	M	S	S	S	S	S	S
CO3	S	S	S	S	M	M	S	M	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

Semester-V/	AEC II - MEDICAL LAB TECHNOLOGY	Course Code:
Ability Enhancement Course -II		
Instruction Hours: 2	Credits: 2	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive Level	K1 -Recalling K2 -Understanding K3 -Applying K4 - Analyzing K5 - Evaluating K6 - Creating
Course Objectives:	 Know the clinical use of instrumentation. Study the analysis of blood, urine, sputum, semen and stool. Study the nature and causes of various diseases. Understand the blood component in human. Skill in diagnosing the human disease.
Unit I	Clinical Diagnostic equipments – Sphygmomanometer – Stethoscope – Compound microscope Centrifuge – Hot air over – Autoclave – Incubator – Refrigerator – Laminar airflow – Spectrophotometer – X-ray(Chest, Heart, Plain, Abdomen, Bones), MRI & CT Scans – ECG and EEG. 18 Hours
Unit II	Collection of Blood – Blood grouping – blood bank – Haemocytometer – Total count of Blood cells (RBC & WBC). Differential count of WBC (Leishman's stain), Platelet count, Absolute Eosinphil counts, Packed cell volume, ESR, Determination of clotting time and Bleeding time. Haemoglobinometer – Hb (Sahli's method) – Aneamias, Digital Glucometer – Blood glucose.
Unit III	Glucose tolerance test(Diabetes Mellitus), Atherosclerosis, Heart failure, Cholesterol, HDL, LDL, Urea, Creatine, Creatitine, Bile salts and Bile pigments. Composition of Urine, Methods of Urine analysis for sugar, Urea & Albumin. Glucosuria – fehling's test, Pregnency test and vidal test. 18 Hours

Unit IV	General Examination – Temperature, Pulse, BP (Normal, Hypertension and Hypotension), Edema and Jaundice. Medical Emergencies – Respiratory failure, Shocks, Acute Gastroentreritis (food poisoning), haemophilia, Acute renal failure, Hypoglycemia, Amoebic dysentery, Snake bite,. Safety precautions and First aid treatment for Superficial Wounds, Burns, and Electrical shock. 18 Hours
Unit V	Diagnostic methods of Protozoan parasites – Malarial parasites and Entamoeba histolytica – Helminthes parasites – Ascaris, Tapeworm, Wuchereria bancrafti and Hook Worm. VDRL test, ELISA, Thyroid function test, Analysis of semen, Sputum and stools. 18 Hours

- 1. SAMUEL K.M Notes on Clinical lab.
- 2. ARUMUGAM.N.2014.Biotechniques- Saras Publication Nagerkoil Kanyakumari.

Reference Books:

- 1.METHAS P.J 1988, Practical medicine for student and Practitioners. The National book Department Mumbai, Pp 1-180.
- 2.GURUMANI N 2006, Research methodology for biological science. MJP Publications, Chennai.
- 3. HAROLD VARIEY 1988 Practical Clinical

Biochemistry. 4.CHATTERJEE- Clinical

Biochemistry.

- 5. KANAI .L.MUGARGEE-2005, Medical Laboratory Technology-A Procedure Manual for routine diagnostic tests-Tata Megraw Hill Publications.
- 6. PANIKAR C.K J AND ANATHANARAYANAN- A Text book of

Microbiology. 7.LEHINGER – Biological Chemistry.

- 8. RAJAN.S& SELVI CHRISTY.R Experimental Procedures in life sciences Anjanaa Book Koyembedu Chennai.
- 9. RAMNIK SOOD ,2015 Concise Book of Medical laboratory Technology- Health Science Publications

e-Resources:

- 1. https://ves.ac.in/tulsitech/
- 2. https://www.ncbi.nlm.nih.gov/books/NBK532915/
- 3. https://diabetes.org/about-diabetes/diagnosis

Course Outcomes:

On completion of the course the learner will be able

CO 1:	Acquired technical skills will help the students for collecting and processing biological specimens for analysis
CO 2:	Understand fundamental analytical principles and processes used in clinical laboratory testing
CO 3:	Application of medical laboratory test will enable the students to understand normal and abnormal
CO 4:	Students enable their critical and analytical thinking in the detection of diseases
CO 5:	Application of medical laboratory procedures will enable the students to distinguish normal and abnormal microscopic pathogens

Mapping of COs with POs & PSOs $\,$

CO/PO	PO					PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	M	S	M	S	S	S	S	S
CO2	S	S	S	S	S	S	M	S	S	S
CO3	S	S	M	M	M	S	M	S	S	S
CO4	S	S	M	S	S	M	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

Semester-VI Core Course-IX	CC IX - DEVELOPMENTAL BIOLOGY	Course Code:
Instruction Hours: 6	Credits: 5	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive Level	K1 -Recalling K2 -Understanding K3 -Applying K4 - Analyzing K5 - Evaluating K6 - Creating
Course Objectives:	 Understanding of the processes of early embryonic development, to analyze the mechanisms of development. Learn theories of fertilization and cleavage. Ability to find out fate maps, morphogenetic movements and developmental stages of chick embryo. Study metamorphosis in amphibian. Know the human health care and artificial insemination and Birth control.
Unit I	Gametogenesis: Spermatogenesis – Cells in seminiferous tubules, Spermiogenesis, structure and types of sperm. Oogenesis – Growth of oocyte, vitellogenesis, organization of egg cytoplasm. Polarity and symmetry – Maturation of egg, egg envelops-Types of eggs. 12 Hours
Unit II	Fertilization: External and Internal fertilization, sperm – egg interaction, physiological changes in the organization of egg cytoplasm – Theories of fertilization. Cleavage–Patterns of cleavage–radial, spiral and bilateral; Types–meroblastic, holoblastic and superficial – Factors affecting cleavage – Chemodifferentiation.
Unit III	Blastulation – Types of blastula. Fate maps. Presumptive organ forming areas in Frog and Chick. Gastrulation in Frog and Chick-Morphogenetic movements- Development of brain and eye in Frog. Developmental stages of Chick embryo up to 96 hours and organogenesis. 12 Hours

Unit IV	Foetal membranes in Chick and Mammals – Placentation in Mammals-types and physiology. Organizer concept and embryonic induction. Regeneration in Planarians and Amphibians. Metamorphosis in Amphibians. Cryopreservation of gametes/embryos - Ethical issues in cryopreservation 12 Hours
Unit V	Mammalian reproduction: Mammalian reproductive cycle, Hormonal regulation, Endocrine changes associated with normal pregnancy, Induced ovulation in humans – Precautions and health care during Human Pregnancy and Gestation- infertility. Artificial Insemination – Concept of test-tube baby – Birth control methods – Factors involved in Teratogenesis. Aging and senescences: Biology of senescences-cause of aging- mechanism involved in apoptosis. 12 Hours

- 1. Beril., N. J.1974. Developmental Biology. Tata Mc Graw-Hill Publishing Company Ltd. NewDelhi.
- **2.** Berry.A.K.2007. An Introduction to Embryology, Emkay Publications, New Delhi-51.

Reference Books:

- 1. Arumugam.N. 1998. Developmental Biology, Saras Publications,
- 2. Balinsky, B.I. 1981. An Introduction to Embryology.
- 3. W.B.SaundersCompany.Philadelphia.S.Banerjee, Development Biology, Dominant Publishers, NNewDelh.
- 4. Verma, P.S. And Agarwal V.K. 2005. Chordate Embryology (Developmental Biology)S. Chand&Company Ltd., NNewDelhi.
- 5. Veer balarastogi, Developmental biology, KedarnathRamnath publishers, meerut.
- 6. Rastogi, V.B and Jayaraj, M.S. 2002. Developmental Biology KedarNath Ram Nath, Meerut.
- 7. Twymann, R.M. 2003. Developmental Biology. Viva Books Private Ltd., New Delhi.

e- Resources:

https://en.m.wikipedia.org

Course Outcomes:

On completion of the course the learner will be able

CO 1:	Develop critical understanding how a single-celled fertilized egg becomes an embryo and then a fully formed adult
CO 2:	Understand how does development affect organization of phenotypes and their variation
CO 3:	Aware of the reproductive cycle, hormones, Birth control and critically assess relevant scientific literature in reproductive biology and present their argument in oral and written work
CO 4:	Explain the concept of Immunology, Mechanism of immunity, Immunity regulating cells.
CO 5:	Understand the Basic structure, classes and function of Antibodies, Antigen-Antibody interaction

Mapping of COs with POs & PSOs

CO/PO	PO					PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	M	M	S	S	M	M	S
CO5	S	S	S	S	S	S	S	S	S	S

S- Strongly correlating

M-Moderately Correlating

W-Weakly Correlating

N-No Correlation

Semester-VI /	CC X- EVOLUTIONARY BIOLOGY	Course Code:
Core Course- X		
Instruction Hours: 6	Credits: 5	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive Level	K1 -Recalling
	K2 -Understanding
	K3 -Applying
	K4 - Analyzing
	K5 - Evaluating
	K6 - Creating
	Evolutionary biology is a branch of the biological sciences concerned
Course	with the origin of life and the diversification and adaptation of life forms
Objectives	over time.
Objectives	2. This course helps to understand the important processes, principles, and
	concepts on evolution.
	3. To provide adequate information on the Lamarckism - Neo Lamarckism
	- Darwinism, Neutral Theory of Molecular Evolution, and Human
	Genome Project.
	4. To explain the importance of the fossil records in evolutionary studies,
	and the role of phylogenetic studies in the wider context of biodiversity
	and conservation.
	5. In this course, we will apply the knowledge of human evolutionary
	history to simulate how genetic variation within and among human
	·
UNIT-I	populations affects risk, diagnosis, and treatment of modern diseases. Inorganic and organic evolution-History of evolutionary thought, Primordial
UNII-I	earth and primeval atmosphere, Chemical origin of life: Synthesis of organic
	molecules, Urey-Miller experiment, Origin of prokaryotes and eukaryotes.
	18 Hours
UNIT-II	Lamarckism - Neo Lamarckism - Darwinism - Neo Darwinism and modern
UNII-II	synthetic theory - DeVrie's Mutation theory – modern concepts of mutation -
	Mutation and their role in evolution - Animal colouration and Mimicry.
	18 Hours
UNIT-III	Isolating mechanisms - Modes of speciation-Hybridization is an evolutionary
UNII-III	catalyst- Law of Adaptive Radiation- Adaptive radiation in reptiles and
	mammals - Convergence and parallelism - Evolutionary constancy.
	18 Hours
UNIT-IV	Morphological, physiological and biochemical, embryological, Taxonomical
UNII-IV	and geographical evidences -Palaeontological evidences – evolutionary
	,
	genomics. Types of rocks - Geological time scale – Nature of fossils- Dating of
TINITE X7	fossils - Fossil records of man and fossil records of horse. Netural salaction in action in man, level of salaction. Evening Eurhanics and
UNIT-V	Natural selection in action in man-level of selection- Eugenics, Euphenics and
	Euthenics- Adaptation- Human Genome Project – Evolution and ethics.
	18 Hours

Text Books

- 1. Ridley, M., 2004. Evolution. III Edition. Blackwell Publishing.
- 2.Lull, R.S. 2010. Organic evolution, The Macmillan, New York.

.

References Books

- 1.Burns GW. 1972. The Science of Genetics. An Introduction to Heredity. Mac Millan Publ. Co.Inc.
- 2.Gardner EF. 1975. Principles of Genetics. John Wiley & Sons, Inc. New York.
- 3. Harth and Jones EW. 1998. Genetics Principles and Analysis. Jones and BarHett Publ. Boston.

E- Resources

- 1. https://homework.study.com/explanation/define-inorganic-evolution.html
- 2. https://www.ck12.org/flexi/life-science/theory-of-evolution/define-neo-lamarckism-and-its-role-in-evolutionary-theory./
- 3. https://www.livescience.com/474-controversy-evolution-works.html

Course Outcomes

On completion of this course, students will be

CO1	To understand the Primordial earth and theories on origin of life
CO2	To integrate and assess Lamarckism - Neo Lamarckism - Darwinism
CO3	To analyse various fossil records of man and fossil records of horse, various types
CO3	of rocks - Geological time scale.
CO4	To explain the Nature of fossils- Dating of fossils, evidences of evolution,
CO4	Adaptive radiation in reptiles and mammals,
CO5	To construct and compile the role of Human Genome Project, Evolution in the
CO3	diagnosis, and treatment of diseases.

Mapping of Cos with Pos & PSOs

CO/PO	PO				PSO					
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	M	S	S	S	S	S
CO2	S	S	S	S	M	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

S- Strongly correlating

M-Moderately Correlating

W-Weakly Correlating

N-No Correlation

Semester-V Core Practical IV	Title of the Course CORE Practical – IV (CC IX&CC X)	Course Code:		
Instruction Hours: 3	Credits: 3	Exam Hours: 3		
Internal Marks -40	External Marks- 60	Total Marks: 100		

Unit I	 Preparation of sperm suspension in bull and observation of spermatozoa. Study of the rate of motility of live sperm in bull semen. Vaginal smear preparation in Rat/Mouse to study the stages of oestrous cycle. 18 Hours
Unit II	 Chick: Blastulation, and Gastrulation Dissection and morphology observation of the 4 -14 somite chick embryo (24-34 Hours). Dissection and morphology observation of the 24-38 somite chick embryo (48 - 85 Hours). Culture of early chick embryo <i>in vitro</i>. Mounting of 72 and 96 hours chick embryo 18 Hours
Unit III	 Frog Egg Frog cleavage 2,4 and 8cell stages Larval developmental stages of Drosophila Chromosome squash preparation from Drosophila larval salivary gland. Patterns of regeneration in the planarian. 18 Hours
Unit IV	1. Study of fossils from models/pictures. 2. Study of homology and analogy from suitable specimens. 3. Demonstration of role of natural selection and genetic drift in changing allele frequencies using simulation studies. 4. Graphic representation and interpretation of data of height/weight of a sample of 100 humans in relation to their age and sex. 18 Hours
Unit V	 Speciation experiments in microbes. Species richness study in animal sampling.

3.	Study on the evolution of man.
	Preparation of e museum and video clippings based on the
	core practical

- 1. Annadurai, B. 2009. A Textbook of Immunology and Immunotechnology. S.Chand& Company Ltd., New Delhi
- 2. Sharma, P.D. 2010 (Tenth Edition) Ecology and Environment, Rastogi Publications, Meerut.

Reference Books:

- 1. Shastri, N.V. 2005. Principles of Immunology. Himalaya Publishing House, DDelhi
- 2. Clarke, G.L. 1954–Elements of Ecology, John Wiley & Sons. N.Y.
- 3. Odum E.P.1971. Fundamentals of ecology. W.B. Saunders Co., Philadalphia

e- Resources:

https://en.m.wikipedia.org https:// www.nature.com https://en.m.wikipedia.org https://openoregon.pressbooks.pub

Course Outcomes:

On completion of the course the learner will be able

.CO 1:	Understand the water quality parameters
CO 2:	Able to examine the planktons.
CO 3:	Understand the animal associations.
CO 4:	Able to handle the basic immunological technique
CO 5:	To learn the lymphoid organs.

S- Strongly correlating M-Moderately Correlating W-Weakly Correlating N-No Correlation

Semester-VI/	DSE- II- ANIMAL BEHAVIOUR	Course Code:
Discipline Specific		
Elective-II		
Instruction Hours: 3	Credits: 3	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive	K1 -Recalling						
Level	K2 -Understanding						
Level	K3 -Applying						
	K4 - Analyzing						
	K5 - Evaluating						
	K6 - Creating						
Course	1. To make them understand the fundamental concepts of Heritability of behaviour						
Objectives	and its unique adaptive strategies.						
	2. To explain the Nature of Animal perception and their behavior.						
	3. To provide adequate information on the Biological aspects of Behavioural						
	learning.						
	4. To understand the' Animal awareness and Emotion and Intelligence						
	5. Know the Organization of circadian system in multicellular animals and clock						
	system.						
UNIT-I	Genetic material, Genes and chromosomes, Genetic variation, Single and Polygenic						
	inheritance of behaviour, Heritability of behaviour, Natural selection and behaviour,						
	Frequency distribution of phenotypes, Darwinian fitness, Evolution of adaptive						
	strategies. 18 Hours						
UNIT-II	Sexual selection, Altruism, Sexual strategy and social organisation, Animal perception,						
	Neural control of behaviour, Sensory processes and perception, Visual adaptations to						
	unfavourable environments. 18 Hours						
TINITE TIT							
UNIT-III	Coordination and Orientation, Homeostasis and Behaviour, Physiology and Behaviour						
	in changing environments, Animal Learning, Conditioning and Learning, Biological						
	aspects of learning, Cognitive aspects of learning. 18 Hours						
UNIT-IV	Instinct and learning, Displacement activities, Ritualization and Communication,						
	Decision making behaviour in Animals, Complex behaviour of honey bees,						
	Evolutionary optimality, Mechanism of Decision making. The mentality of Animals:						
	Languages and mental representation, non-verbal communication in human, mental						
	images, Intelligence, tool use and culture, Animal awareness and Emotion. 18 Hours						

UNIT-V	Organization of circadian system in multicellular animals; Concept of central and
	peripheral clock system; Circadian pacemaker system in invertebrates with particular
	reference to Drosophila; Photoreception and photo- transduction; Molecular bases of
	seasonality; The relevance of biological clocks for human welfare - Clock function
	(dysfunction); Human health and diseases – Chrono pharmacology, chrono medicine,
	chronotherapy. 18 Hours

Text Books

- 1. David McFarland, 1985. Animal Behaviour, Longman Scientific & Technical, UK. 576pp.
- 2. HarjindraSingh, 1990. A TextBook of Animal Behaviour, AnomolPublication, 293pp.

Reference book

- 1. Michael D. Breed and Janice Moore, 2012. Animal Behaviour, Academic Press, USA, 359pp.
- 2. Aubrey Manning and Martin Stamp Dawkins, 2012. An Introduction to Animal Behaviour, 6th Edition, Cambridge University Press, UK. 458pp.
- 3. Davis E.Davis, 1970. Integral Animal Behaviour, Mac Millan Company, London, 118pp.
- 4. Jay, C. Dunlap, Jennifer, J. Loros, Patricia J. De Coursey (ed). 2004. Chronobiology Biological time Keeping, Sinauer Associates Inc, Publishers, Sunderland, MA.

E- Resources

- 1. https://pubmed.ncbi.nlm.nih.gov/31116388/
- 2. https://academic.oup.com/book/1451/chapter/140837272
- 3. https://animaltalk.com.au/mindset-animal-accomplish/

	Mapping with Programme Outcomes*										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	
CO1	S	S	M	M	L	L	M	M	L	L	
CO2	S	M	L	L	S	L	M	M	L	M	
CO3	M	L	M	L	S	S	M	S	M	S	
CO4	S	S	S	S	M	S	L	L	L	M	
CO5	S	L	L	L	M	L	L	S	M	S	

S- Strongly correlating M-Moderately Correlating W-Weakly Correlating N-No Correlation

Semester- VI /	Title of the Course	Course Code:
Discipline Specific		
Elective-II	EC II -DAIRY FARMING	
Instruction Hours: 3	Credits: 3	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive	K1 -Recalling
	K2 -Understanding
Level	K3 -Applying
	K4 - Analyzing
	K5 - Evaluating
	K6 - Creating
Course Objectives	Students should know basic concepts in Vermiculture
	To learn Construction of Model Dairy House
	To know about Feeding of pregnant dairy animals - Feeding pregnant heifer.
	To study the Dairying as a source of additional income and employment.
	Students should know the basics of Vaccination

UNIT S	CONTENT	HOURS
I	Introduction to Dairy Farming- Advantages of dairying- Classification of breeds of cattle-Indigenous and exotic breeds- Selection of dairy cattle. Breeding-artificial insemination-Dairy cattle management-General Anatomy.	6
II	Construction of Model Dairy House - Types of Housing - Different Managemental Parameters - Winter Management - Summer Management	6
Ш	Feedstuffs available for livestock- Roughages -Concentrates - Energy rich concentrates - Protein rich concentrates - Mineral Supplements - Vitamin Supplements - Feed additives - Feeding management - Calves Feeding - Feeding of adults - Feeding of pregnant dairy animals - Feeding pregnant	6

	heifer.	
IV	Milk-Composition of milk-milk spoilage-pasteurization - Role of milk and milk products in human nutrition — Dairying as a source of additional income and employment.	6
V	Contagious disease - Common Bacterial - Protozoal - Helminth and Viral Diseases - Parasitic Infestation - Vaccination - Biosecurity.	6

Text Book:

- 1.The Veterinary Books for Dairy Farmers by Roger W. Blowey.2. Hand Book of Dairy Farming by Board Eiri.
- 3. Handbook of animal husbandry TATA, S.N ed., ICAR 1990

Reference Books:

- 1. 15. James. N. Marner, 1975. Principles of dairy processing, wiley eastern limited, New Delhi.
- 2. Baradach, JE. Ryther. JH. and, MC larney WO., 1972. Aquaculture. The farming and Husbandry of Freshwater and Marine Organisms. Wiley

InterScience, NewYork.

Course Outcome

Upon completion of this course, Students would have

CO:1	To understand the various practices in Dairy farming. To know the needs for Dairy
	farming and the status of India in global market.
CO: 2	To be able to apply the techniques and practices needed for Dairy farming.
CO:3	To know the difficulties in Dairy farming and be able to propose plans against it.
CO:4	To Learn about the Dairying as a source of additional income and employment.
CO:5	To know the Contagious disease

PO							PSO				
COs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	M	S	L	L	S	S	M	S	L	M	
CO2	M	S	S	S	M	S	M	L	S	S	
CO3	M	S	S	S	S	S	S	S	S	M	
CO4	M	S	S	S	M	M	L	L	M	M	
CO5	S	S	S	M	S	M	S	L	S	S	

S- Strongly correlating M-Moderately Correlating

W-Weakly Correlating

N-No Correlation

Semester-VI/ Discipline Specific Elective- III	DSE III- ENTOMOLOGY	Course Code:
Instruction Hours: 4	Credits: 3	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Course Objectives	To understand the classification and working of insect systems
3	To understand their adaptations to the environment
	To look in to some commercial applications of entomology with
	Beneficial insects, sericulture, insect pests and their control, vector Borne diseases etc.
	Skill to rear and mass production of commercially important insects.
	Skill to identify the harmful insect and pest.
UNIT-I	Taxonomy and Classification: Classification and key characters of important Orders
	such as Coleoptera (Rhinoceros beetle), Lepidoptera (Plain tiger butterfly), Diptera
	(Aedes mosquito), Hemiptera (Bedbug), Hymenoptera (Indian Honey Bee), Orthoptera
	(Grasshopper), Isoptera,(Termites).
UNIT-II	Biology of insects: General organization of a typical Insect – types of head; Thorax–
	Abdomen – Antenna– Mouth Parts, Legs–Wings Senseorgans; Sound producing organs;
	Structure of Digestive system - Circulatory system - Excretory system - Respiratory
	system –Nervous system–Reproductive system; Metamorphosis and types; Types of
	larvae and pupae; Role of endocrine and pheromones 18 Hours
UNIT-III	Commercial Entomology: Apiculture- Biology and life- history of honeybees:
	Methods of beekeeping –Equipment and tools-Apiary management, Bee products,
	Diseases of honeybees. Sericulture-Mulberry sericulture-Non-Mulberry sericulture-Lac
	culture:-Propagation of lac insects -Natural enemies of lac insects and their
	management-Lac extraction 18 Hours
UNIT-IV	Harmful insects: Vector borne diseases: Method of transmission of parasitic agents with
	special reference to mosquitoes and housefly. Host–parasite interaction with examples.
	Polyphagous insect pests: Locusts, termites, hairy caterpillars, cutworms, grampod borer
**************************************	18 Hours
UNIT-V	Insect pests and their control: Insects as crop pests: Major pests of the following crops
	and their life cycles, Types of injuries and nature of damage caused to paddy (Brown part happer) sugargana (Boot harm) pulses (plume moth) vegetables (brinial Shoot and
	pant hopper), sugarcane (Root borer), pulses (plume moth), vegetables(brinjal-Shoot and
	fruit borer), Coconut (Red PalmWeevil) and stored grain Pests (Pulse beetle). 18 Hours

Text Books:

- 1.NAYAR,K.K.,ANANTHAKRISHNAN,T.N.ANDB.V.DAVID. 1989. General and Applied Entomology. Tata McGraw Hill Publications, New Delhi
- 2.V.B.AWASTHI,2009. Introduction to General and Applied Entomology. 3rd Revised Edition .Scientific Publishers, India.Jodhpur.

Reference Books:

- a. RAMAKRISHNA AYYAR T.V. 1989. Handbook of Economic Entomology for SouthIndia. Books and Periodicals Supply Service, New Delhi.
- b. FROST S.W.1994. General Entomology. Narendra Publishing House, Delhi.
- c. DENNIS S.HILL. 1993.AgriculturalInsect Pests of the Tropics and their Control.Second Edition, Cambridge University Press, U.K.
- d. CHARLESATRIPLEHOMANDNORMANF.JOHNSON2005.
 Borror and DeLong's Introduction to the Study of Insects Thomson Brooks/Cole Publishing.
 U.S.A.
- e. RAJEEV K.UPADHYAY, MUKERJII K.G. CHANDA, B.P. AND DUBEY, O.P. 1998. Integrated Pest and Disease Management. APH Publishing Corporation, NewDelhi.
- f. V.B.AWASTHI,2007.Agricultural Insect Pests and their control..Scientific.

E- Resources

- 1. https://www.huck.psu.edu/assets/uploads/documents/Introduction-to-Insects.pdf
- 2. https://www.dhanuka.com/blogs/list-of-bugs-and-insects-harmful-to-the-agriculture-industry
- 3. https://hicare.in/blog/common-diseases-caused-by-harmful-insects/

Course Outcomes

On completion of this course, students will be

CO1	To Know about the steps required to do insect systematic and classify insect pest			
COI	using key characters.			
CO2	To Understand morphology of insect pest.			
CO3	To Apply the skill for various sustainable commercial production of apiculture,			
COS	sericulture and lac culture.			
CO4	To Understand the impact of harmful insect pest in agriculture.			
CO5 To understand the Primordial earth and theories on origin of life				

Mapping of COs with Pos & PSOs

CO/PO	PO PSO						O/PO PO PSO					
	1	2	3	4	5	1	2	3	4	5		
CO1	S	S	M	S	M	S	S	S	M	S		
CO2	S	S	S	M	M	S	M	S	M	S		
CO3	S	S	S	M	S	S	S	S	S	S		
CO4	S	S	S	S	S	S	M	S	S	S		
CO5	S	S	S	S	S	S	M	S	S	S		

S- Strongly correlating M-Moderately Correlating W-Weakly Correlating N-No Correlation

Semester-VI/ Discipline Specific Elective- III	DSE III- PUBLIC HEALTH AND HYGINE	Course Code:
Instruction Hours: 4	Credits: 3	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive Level	K1 -Recalling K2-Understanding K3 -Applying K4 - Analyzing K5 - Evaluating K6 - Creating
Course Objectives:	 To enlighten the non- major elective students about the general knowledge on their health and hygiene. To create general health awareness the hazardous impacts and remedy. Understand the communicable and non communicable disease and its prevention. Understand the different environmental pollution and its hazards. Learn WHO programme of public health and hazards.
Unit I	Scope of Public health and Hygiene – nutrition and health – classification of foods – Nutritional deficiency diseases- Vitamin deficiency diseases. 6 Hours
Unit II	Environment and Health hazards: Environmental degradation – Pollution – Air, Water, Land and Noise-associated health hazards 6 Hours
Unit III	Communicable diseases and their preventive and control measures. Measles, Hepatitis, HIV /AIDS,Cholera, Malaria and Filariasis. 6 Hours
Unit IV	Non-Communicable diseases and their preventive measures. Genetic diseases, Cancer, Cardio vascular diseases, Chronic respiratory disease, Diabetes, Epilepsy. 6 Hours
Unit V	Health Education in India – WHO Programmes – Government and Voluntary Organizations and their health services – Precautions, First Aid and awareness on epidemic/sporadic diseases. 6 Hours

 PARK AND PARK, 1995: Text Book of Preventive and Social Medicine – BanarsidasBhanot Publ. Jodhpur – India.

Reference Books:

- 1. VERMA, S. 2020: Medical Zoology, Rastogi publ. Meerut India
- 2. SINGH, H.S. AND RASTOGI, P. 2009: Parasitology, Rastogi Publ. India.
- 3. DUBEY, R.C AND MAHESWARI, D.K. 2007: Text Book of Microbiology- S. Chand & Co. Publ. New Delhi India.

e-Resources:

1. http://www.dettol.co.in

Course Outcomes:

On completion of the course the learner will be able

CO 1:	Understand public health practice requires multidisciplinary team of public health workers and professionals.
CO 2:	Improve the quality of life through promotion of healthy behaviors including mental health.
CO 3:	Learn healthy habits to protect yourself from disease and prevent germs and infectious diseases from spreading.
CO 4:	Understand the Socioeconomic impact of non-communicable diseases.
CO 5:	Aware of public health is the result of society's efforts as a whole, rather than that of single individuals

Mapping of Cos with Pos & PSOs

CO/PO			PO			PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	M	S	S	M	S	S	S	S	S
CO3	S	S	S	S	S	S	S	M	S	S
CO4	S	M	S	S	S	M	S	S	M	S
CO5	S	S	S	S	S	S	S	S	S	S

S- Strongly correlating

M-Moderately Correlating W-Weakly Correlating

N-No Correlation

Semester-VI/ Ability Enhancement Course - III	AEC-III- INTRODUCTION TO NANOBIOTECHNOLOGY	Course Code:
Instruction Hours: 2	Credits: 2	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

	To make them understand the fundamental concepts of Nanotechnology and its unique properties.
Course	To provide knowledge on the synthesis of various characterization techniques
Objectives	 To highlight the importance of fabrication techniques and their biological applications.
	To demonstrate the applications of nanomaterials in various streams
	To make them learn toxicity mechanisms and regulatory functions of
	nanomaterials.

UNITS	CONTENT
	Generic Methodologies for Nanobiotechnology:
UNIT I	Introduction to nanotechnology - challenges and opportunities associated with biology on the nanoscale. Top-down approaches – sputtering - chemical etching - thermal/laser ablation - mechanical/ball missling. Bottom-up approaches - vapour deposition - sol-gel
	process - spray pyrolysis - aerosol process - bioreduction. Advantages and disadvantages of nanotechnology. 6 Hours
	Nanomaterials Synthesis and Characterization Techniques:
UNIT II	Synthesis of nanoparticles - characterization techniques - UV-Visible spectrophotometer - Field Emission Scanning-Electron Microscopy (FE-SEM) - Energy Dispersive X-ray (EDX) - High Resolution-Scanning Electron Microscopy (HR-TEM) - Dynamic Light Scattering (DLS) - zeta potential -Fourier Transform - Infra red (FT-IR) - X-ray
	Diffraction (XRD) and Raman spectroscopy. 6 Hours
	Introduction to Sensors:
UNIT III	Principles of biosensors -types - important component of biosensor - materials for biosensor applications. Fabrication of biosensor devices - electrochemical methods - techniques used for microfabrication - biological applications. 6 Hours

	Bionanomaterials:
UNIT IV	Biomolecules for designing nano-structures - nanoprinting of DNA - RNA - proteins - biological and medical applications. Classification of nanomaterials - properties and applications of bionanomaterials - tissue engineering - drug delivery - controlled release and disease diagnosis.
	6 Hours
	Toxicology and Environmental Safety:
V	Introduction to nanomaterials - toxicological effects - bioaccumulation - biotransformation - cytotoxicity and genotoxicity. Mechanism of nanomaterials toxicity - oxidative stress - ecotoxicity - mutagenicity and immunotoxicity. Ethics and regulations issues in nanotechnology - exploration pattern matters associated with nanotechnology - social impacts and human resources for nanotechnology. 6 Hours

Text book

- 1. Niemeyer, C.M. and Mirkin, C.A. (2004). Nanobiotechnology: Concepts, Applications and Perspectives. Wiley VCH.
- 2. Goodsell, D.S. (2004). Bionanotechnology: Lessons from Nature. Wiley Online Library.

REFERENCES:

- 1. Sahu, S.C. and Casciano, D.A. (2014). Handbook of Nanotoxicology, Nanomedicine and Stem cell use in Toxicology. John Wiley & Sons, Ltd.
- 2. Bagchi, D., Bagchi, M., Moriyama, H. and Shahidi, F. (2013). Bio-Nanotechnology: A Revolution in Food, Biomedical and Health Sciences. Wiley-Blackwell Publishers.
- 3. Parak, W. and Feliu, N. (2020). Colloids for Nanobiotechnology Synthesis, Characterization and Potential Applications. Elsevier Science.
- 4. Brechignac, C., Houdy, P. and Lahmani, M. (2007). Nanomaterials and Nanochemistry. Springer publication.
- 5. Klabunde, K.J. (2001). Nanoscale Materials in Chemistry. Wiley Interscience Publications.
- 6. Klabunde, K.J. (2001). Nanoscale Materials in Chemistry. Wiley Interscience Publications.
- 7. Cao, G. (2004). Nanostructures and Nanomaterials -Synthesis, Properties and Applications. Imperial College Press.
- 8. Zhao, Y. and Nalwa, H.S. (2006). Nanotoxicology Interactions of Nanomaterials with Biological Systems. American Scientific Publishers.
- 9. Webster, T.J. and Ghosh, S. (2021). Nano biotechnology: Microbes and Plant Assisted Synthesis of Nanoparticles Mechanisms and Applications. (I Edition), Elsevier Science. 10. Papazoglou, E.S. and Aravind Parthasarathy. (2007). Bionanotechnology Synthesis Lectures on Biomedical Engineering. Morgan and Claypool publishers.

E.Resources

1. https://www.britannica.com/technology/nanotechnology/Nanofabrication

- 2. https://pubs.rsc.org/en/content/articlelanding/2018/nr/c8nr02278j
- 3. https://link.springer.com/book/10.1007/978-981-10-2468-9#toc

Course Outcome

Students would have acquired clear knowledge on

CO:1	Upon successful completion of this course the students would be able to:
	Acquire mastery of synthesis procedures and their chemical interactions
CO: 2	Understand the fundamental applications of various analytical instruments.
CO:3	Understand the usage of biosensor devices for the early detection of infectious
	diseases.
CO:4	Apply bionanomaterials in biomedical research and therapeutic applications
CO:5	Profile the individual nanomaterial toxicity profile and mechanistic pathways.

Mapping of Cos with Pos & PSOs

PO						PSO					
COs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	S	M	S	S	S	S	M	S	S	S	
CO2	S	S	M	S	S	S	M	M	S	S	
CO3	S	M	M	S	S	S	S	S	S	M	
CO4	M	S	M	M	S	S	S	S	S	M	
CO5	M	S	S	S	M	S	M	S	S	M	

S- Strongly correlating M-Moderately Correlating

W-Weakly Correlating

N-No Correlation

Semester-V / Skill Enhancement - IV	SEC –IV SERICULTURE	Course Code:
Instruction Hours: 2	Credits: 2	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive	K1 -Recalling					
	K2 -Understanding					
Level	K3 -Applying					
	K4 - Analyzing					
	K5 - Evaluating					
	K6 - Creating					
	Students should know basic concepts and techniques in Sericulture.					
Course	To study about the Moriculture					
Objectives	To learn about Egg-storage and transportation					
	To study Rearing houses and equipment					
	To learn about the Physical and commercial characteristics of cocoons					

	Introduction to textile fibers; types- natural and synthetic fibers; sources of silk fiber- Tasar, Muga,						
UNIT I	Anaphe, Gonometa, Fagara, spider and mussel; properties and importance of silk fiber. History,						
	development, status, characteristics and advantages of sericulture in India. 6 Hours						
	Host plants; Moriculture- distribution, morphology, propagation- seedling, cutting, grafting, layering						
UNIT II	and micropropagation methods, maintenance- irrigation, manuring and pruning, pests and diseases of						
	mulberry. 6 Hours						
UNIT III	Bombyx mori- morphology, anatomy, life cycle, geographical locations, larval moults, voltinism,						
	indigenous and commercial races. Diapause. Egg-storage and transportation. 6 Hours						
	Rearing houses and equipment. Rearing operations- disinfection, brushing, feeding and spacing.						
	Moulting and spinning. Harvest. Rearing methods- chawki, lasso, showa, shelf-rearing, floor-rearing						
UNIT IV	and shoot rearing. Diseases of <i>Bombyx mori</i> - protozoan, bacterial, viral and fungal. Pests of						
	silkworm- Uzi fly, desmestids, mites, ants, nematodes, aves and mammals.						
	6 Hours						
**********	Physical and commercial characteristics of cocoons. Cocoon harvesting and marketing. Cocoon						
UNIT V	sorting, stifling, deflossing, riddling, cooking, brushing, reeling and re-reeling. Weaving. By-						
	products of sericulture industry. 6 Hours						

Text Books:

- Singh, Amardev & Ravinder Kumar. 2013. Sericulture handbook Vol 1, Biotech.
 M. Madan Mohan Rao. An Introduction to Sericulture, 2nd edition, BS Publications

Reference Books:

- 1. G. Ganga and J. Sulochana Chetty. 2019. An introduction to sericulture, 2nd edition, Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi.
- 2. M. Johnson and M. Kesary. 2019. Sericulture, Saras publication, Tamilnadu.

e-Resources:

- 10. https://agritech.tnau.ac.in/sericulture/
- 11. https://csb.gov.in
- 12. https://www.slideshare.net/Nayananayu2/2-a-chapter-morphology-and-life-cycle-of-silkworms-species-and-their-host-plants

Course Outcome:							
Upon completion of this course, Students would have							
CO:1	To understand the various practices in sericulture. To know the needs for sericulture and the status of India in global market.						
CO: 2	Able to apply the techniques and practices needed for sericulture.						
CO:3	To know the difficulties in sericulture and be able to propose plans against it.						
CO:4	To know the Diseases of <i>Bombyx mori</i>						
CO:5	To Learn the By-products of sericulture industry.						

Mapping of Cos with Pos & PSOs

PO						PSO				
COs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	M	L	L	L	L	L	M	S	L	L
CO2	L	M	L	M	L	M	M	S	M	L
CO3	M	S	L	L	L	M	L	L	M	S
CO4	M	S	M	S	M	M	L	L	S	S
CO5	M	M	L	M	M	L	L	L	L	M

S- Strongly correlating, W-Weakly Correlating, N-No Correlation

M-Moderately Correlating